Nonparametric regression for interval-valued data based on local linear smoothing approach

被引:10
|
作者
Kong, Lingtao [1 ]
Song, Xiangjun [1 ]
Wang, Xiaomin [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval -valued data; Local linear smoothing technique; Kernel function; Bandwidth; MODEL; TESTS;
D O I
10.1016/j.neucom.2022.06.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an interval local linear method (ILLM) to fit the regression model with interval -valued explanatory and response variables. The proposed method has no restriction on the form of the regression function. Moreover, it reduces the boundary effect of interval kernel method. Some experi-mental studies including two simulations and four real datasets are examined to evaluate the proposed method. Experimental results show that our method has higher predictive accuracy than some existed methods, including the center and range method, the interval least absolute method, the interval kernel method, multi-output support vector regression and the interval multilayer perceptron.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:834 / 843
页数:10
相关论文
共 50 条
  • [21] A new method to fit a linear regression model for interval-valued data
    de Carvalho, FD
    Neto, ED
    Tenorio, CP
    KI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3238 : 295 - 306
  • [22] Nonlinear regression applied to interval-valued data
    Eufrásio de A. Lima Neto
    Francisco de A. T. de Carvalho
    Pattern Analysis and Applications, 2017, 20 : 809 - 824
  • [23] Nonlinear regression applied to interval-valued data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (03) : 809 - 824
  • [24] A Linear Regression Model for Interval-Valued Response Based on Set Arithmetic
    Blanco-Fernandez, Angela
    Colubi, Ana
    Garcia-Barzana, Marta
    Montenegro, Manuel
    SYNERGIES OF SOFT COMPUTING AND STATISTICS FOR INTELLIGENT DATA ANALYSIS, 2013, 190 : 105 - 113
  • [25] Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters
    Arefi, Mohsen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1339 - 1351
  • [26] Functional linear models for interval-valued data
    Beyaztas, Ufuk
    Shang, Han Lin
    Abdel-Salam, Abdel-Salam G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 3513 - 3532
  • [27] A clusterwise nonlinear regression algorithm for interval-valued data
    de Carvalho, Francisco de A. T.
    Lima Neto, Eufrasio de A.
    da Silva, Kassio C. F.
    INFORMATION SCIENCES, 2021, 555 : 357 - 385
  • [28] Interval-Valued Regression - Sensitivity to Data Set Features
    Kabir, Shaily
    Wagner, Christian
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [29] Bivariate elliptical regression for modeling interval-valued data
    Wagner J. F. Silva
    Renata M. C. R. Souza
    F. J. A. Cysneiros
    Computational Statistics, 2022, 37 : 2003 - 2028
  • [30] Bivariate elliptical regression for modeling interval-valued data
    Silva, Wagner J. F.
    Souza, Renata M. C. R.
    Cysneiros, F. J. A.
    COMPUTATIONAL STATISTICS, 2022, 37 (04) : 2003 - 2028