Nonparametric regression for interval-valued data based on local linear smoothing approach

被引:13
作者
Kong, Lingtao [1 ]
Song, Xiangjun [1 ]
Wang, Xiaomin [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval -valued data; Local linear smoothing technique; Kernel function; Bandwidth; MODEL; TESTS;
D O I
10.1016/j.neucom.2022.06.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an interval local linear method (ILLM) to fit the regression model with interval -valued explanatory and response variables. The proposed method has no restriction on the form of the regression function. Moreover, it reduces the boundary effect of interval kernel method. Some experi-mental studies including two simulations and four real datasets are examined to evaluate the proposed method. Experimental results show that our method has higher predictive accuracy than some existed methods, including the center and range method, the interval least absolute method, the interval kernel method, multi-output support vector regression and the interval multilayer perceptron.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:834 / 843
页数:10
相关论文
共 31 条
[1]  
Billard L, 2000, ST CLASS DAT ANAL, P369
[2]  
Billard L., 2007, Symbolic Data Analysis: Conceptual Statistics and Data Mining
[3]   A set arithmetic-based linear regression model for modelling interval-valued responses through real-valued variables [J].
Blanco-Fernandez, Angela ;
Colubi, Ana ;
Garcia-Barzana, Marta .
INFORMATION SCIENCES, 2013, 247 :109-122
[4]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[5]   Off the beaten track: A new linear model for interval data [J].
Dias, Sonia ;
Brito, Paula .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 258 (03) :1118-1130
[6]   A robust method for linear regression of symbolic interval data [J].
Domingues, Marco A. O. ;
de Souza, Renata M. C. R. ;
Cysneiros, Francisco Jose A. .
PATTERN RECOGNITION LETTERS, 2010, 31 (13) :1991-1996
[7]   Interval kernel regression [J].
Fagundes, Roberta A. A. ;
de Souza, Renata M. C. R. ;
Cysneiros, Francisco Jose A. .
NEUROCOMPUTING, 2014, 128 :371-388
[8]   Robust regression with application to symbolic interval data [J].
Fagundes, Roberta A. A. ;
de Souza, Renata M. C. R. ;
Cysneiros, Francisco Jose A. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (01) :564-573
[9]  
Fahrmeir L., 2013, Regression: models, methods and applications, DOI DOI 10.1007/978-3-642-34333-9
[10]  
Fan J., 2005, NONLINEAR TIME SERIE