A Study of Cu Doping Effects in P2-Na0.75Mn0.6Fe0.2(CuxNi0.2-x)O2 Layered Cathodes for Sodium-Ion Batteries

被引:29
作者
Wang, Yichao [1 ]
Kim, Sooran [1 ,2 ]
Lu, Jingyu [1 ]
Feng, Guangyuan [1 ]
Li, Xin [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Kyungpook Natl Univ, Dept Phys Educ, Daegu 41566, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Cu doping; diffusion; Jahn-Teller distortion; sodium-ion battery; oxygen redox; TOTAL-ENERGY CALCULATIONS; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; P2-TYPE; OXIDE; PERFORMANCE; PHASE; NI; SUBSTITUTION; ELECTRODE;
D O I
10.1002/batt.201900172
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Layered sodium metal oxide cathodes have much broader choice of transition metal elements than the Li counterparts. A reversible Cu2+/3+ redox couple has recently been introduced in such Na cathodes. To study the role of Cu, here P2-type layered Na0.75Mn0.6Fe0.2(CuxNi0.2-x)O-2 compounds have been designed, synthesized and investigated. It shows the high initial capacity of 206 mAh/g and good capacity retention. Reversible oxygen redox activity is observed in our experiments. Our DFT calculations suggest that Cu can stabilize the oxygen redox by modifying the electronic structure together with Fe at high voltages. In addition, the strong P ' 2 transition observed at low voltages is induced by Jahn-Teller active Cu2+ with two competing effects of enhanced Na ion diffusivity and reduced electronic conductivity.
引用
收藏
页码:376 / 387
页数:12
相关论文
共 51 条
[1]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[2]   Single-phase P2-type layered oxide with Cu-substitution for sodium ion batteries [J].
Chen, Tao ;
Liu, Weifang ;
Zhuo, Yi ;
Hu, Hang ;
Zhu, Maolan ;
Cai, Ruizheng ;
Chen, Xinxin ;
Yan, Jun ;
Liu, Kaiyu .
JOURNAL OF ENERGY CHEMISTRY, 2020, 43 :148-154
[3]   A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries [J].
Chen, Tao ;
Liu, Weifang ;
Gao, Han ;
Zhuo, Yi ;
Hu, Hang ;
Chen, Ao ;
Zhang, Jianwen ;
Yan, Jun ;
Liu, Kaiyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (26) :12582-12588
[4]   Super Charge Separation and High Voltage Phase in NaxMnO2 [J].
Chen, Xi ;
Wang, Yichao ;
Wiaderek, Kamila ;
Sang, Xiahan ;
Borkiewicz, Olaf ;
Chapman, Karena ;
LeBeau, James ;
Lynn, Jeffrey ;
Li, Xin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (50)
[5]   Reversible Flat to Rippling Phase Transition in Fe Containing Layered Battery Electrode Materials [J].
Chen, Xi ;
Hwang, Sooyeon ;
Chisnell, Robin ;
Wang, Yichao ;
Wu, Fan ;
Kim, Sooran ;
Lynn, Jeffrey W. ;
Su, Dong ;
Li, Xin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (39)
[6]   Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries [J].
de Boisse, B. Mortemard ;
Carlier, D. ;
Guignard, M. ;
Delmas, C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A569-A574
[7]   High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Lu, Xiao ;
Yao, Qingrong ;
Wang, Zhongmin ;
Liu, Hua-Kun ;
Zhou, Huaiying ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[8]   Routes to High Energy Cathodes of Sodium-Ion Batteries [J].
Fang, Chun ;
Huang, Yunhui ;
Zhang, Wuxing ;
Han, Jiantao ;
Deng, Zhe ;
Cao, Yuliang ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[9]   A rechargeable sodium-ion battery using a nanostructured Sb-C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode [J].
Hasa, Ivana ;
Passerini, Stefano ;
Hassoun, Jusef .
RSC ADVANCES, 2015, 5 (60) :48928-48934
[10]   High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries [J].
Hasa, Ivana ;
Buchholz, Daniel ;
Passerini, Stefano ;
Scrosati, Bruno ;
Hassoun, Jusef .
ADVANCED ENERGY MATERIALS, 2014, 4 (15)