Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors

被引:88
作者
Zhou, Xiaodong [1 ,2 ,6 ]
Zhang, Run-Wu [1 ,2 ,6 ]
Zhang, Zeying [3 ,6 ]
Feng, Wanxiang [1 ,2 ]
Mokrousov, Yuriy [4 ,5 ]
Yao, Yugui [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Phys, Ctr Quantum Phys, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Beijing 100081, Peoples R China
[3] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
[4] Forschungszentrum Julich & JARA, Peter Grunberg Inst, D-52425 Julich, Germany
[5] Forschungszentrum Julich & JARA, Inst Adv Simulat, D-52425 Julich, Germany
[6] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
SPIN; FERROMAGNETISM; TRANSITION; CRYSTAL;
D O I
10.1038/s41524-021-00632-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manipulating valley-dependent Berry phase effects provides remarkable opportunities for both fundamental research and practical applications. Here, by referring to effective model analysis, we propose a general scheme for realizing topological magneto-valley phase transitions. More importantly, by using valley-half-semiconducting VSi2N4 as an outstanding example, we investigate sign change of valley-dependent Berry phase effects which drive the change-in-sign valley anomalous transport characteristics via external means such as biaxial strain, electric field, and correlation effects. As a result, this gives rise to quantized versions of valley anomalous transport phenomena. Our findings not only uncover a general framework to control valley degree of freedom, but also motivate further research in the direction of multifunctional quantum devices in valleytronics and spintronics.
引用
收藏
页数:7
相关论文
共 67 条
[1]  
Antonov V., 2004, Electronic Structure and Magneto-Optical Properties of Solids
[2]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[3]   Resonant Photovoltaic Effect in Doped Magnetic Semiconductors [J].
Bhalla, Pankaj ;
MacDonald, Allan H. ;
Culcer, Dimitrie .
PHYSICAL REVIEW LETTERS, 2020, 124 (08)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Spin-valley coupling in a two-dimensional VSi2N4 monolayer [J].
Cui, Qirui ;
Zhu, Yingmei ;
Liang, Jinghua ;
Cui, Ping ;
Yang, Hongxin .
PHYSICAL REVIEW B, 2021, 103 (08)
[6]   Anomalous Hall effect in ferromagnets with Gaussian disorder [J].
Czaja, Philippe ;
Freimuth, Frank ;
Weischenberg, Juergen ;
Bluegel, Stefan ;
Mokrousov, Yuriy .
PHYSICAL REVIEW B, 2014, 89 (01)
[7]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[8]   Observation of the universal magnetoelectric effect in a 3D topological insulator [J].
Dziom, V. ;
Shuvaev, A. ;
Pimenov, A. ;
Astakhov, G. V. ;
Ames, C. ;
Bendias, K. ;
Boetcher, J. ;
Tkachov, G. ;
Hankiewicz, E. M. ;
Bruene, C. ;
Buhmann, H. ;
Molenkamp, L. W. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Atomistic spin model simulations of magnetic nanomaterials [J].
Evans, R. F. L. ;
Fan, W. J. ;
Chureemart, P. ;
Ostler, T. A. ;
Ellis, M. O. A. ;
Chantrell, R. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
[10]   Spin-valley Hall phenomena driven by Van Hove singularities in blistered graphene [J].
Farooq, M. Umar ;
Hashmi, Arqum ;
Ono, Tomoya ;
Huang, Li .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)