Modularity of logarithmic parafermion vertex algebras

被引:15
|
作者
Auger, Jean [1 ]
Creutzig, Thomas [1 ]
Ridout, David [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Vertex algebras; Conformal field theory; Modular transformations; Parafermions; Coset constructions; Primary; 17B69; Secondary; 13A50; EXTENDED CONFORMAL ALGEBRAS; OPERATOR-ALGEBRAS; VERLINDE FORMULAS; FUSION RULES; INVARIANT REPRESENTATIONS; LIE-ALGEBRAS; FIELD-THEORY; C-2-COFINITENESS; CONSTRUCTIONS; CHARACTERS;
D O I
10.1007/s11005-018-1098-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parafermionic cosets Ck = Com( H, Lk ( sl2)) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck. Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck, irreducible Ck -and Bk-modules are obtained from those of Lk ( sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The irreducible Ck -and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C2-cofinite vertex operator algebras.
引用
收藏
页码:2543 / 2587
页数:45
相关论文
共 50 条
  • [31] Toroidal prefactorization algebras associated to holomorphic fibrations and a relationship to vertex algebras
    Szczesny, Matt
    Walters, Jackson
    Williams, Brian R.
    ADVANCES IN MATHEMATICS, 2021, 386
  • [32] Vertex algebras at the corner
    Gaiotto, Davide
    Rapcak, Miroslav
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [33] On indecomposable vertex algebras associated with vertex algebroids
    Jitjankarn, Phichet
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2020, 560 : 791 - 817
  • [34] Towards automorphic to differential correspondence for vertex algebras
    Zuevsky, Alexander
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 603 - 610
  • [35] Reconstruction of Vertex Algebras in Even Higher Dimensions
    Bakalov, Bojko N.
    Nikolov, Nikolay M.
    ANNALES HENRI POINCARE, 2024, 25 (09): : 3927 - 3956
  • [36] Weight Representations of Admissible Affine Vertex Algebras
    Arakawa, Tomoyuki
    Futorny, Vyacheslav
    Ramirez, Luis Enrique
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1151 - 1178
  • [37] Lattice vertex algebras and combinatorial bases: general case and W-algebras
    Milas, Antun
    Penn, Michael
    NEW YORK JOURNAL OF MATHEMATICS, 2012, 18 : 621 - 650
  • [38] The Vertex Algebra M(1)+ and Certain Affine Vertex Algebras of Level-1
    Adamovic, Drazen
    Perse, Ozren
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [39] Commutative vertex algebras and their degenerations
    B. L. Feigin
    Functional Analysis and Its Applications, 2014, 48 : 175 - 182
  • [40] On twisted representations of vertex algebras
    Roitman, M
    ADVANCES IN MATHEMATICS, 2003, 176 (01) : 53 - 88