Modularity of logarithmic parafermion vertex algebras

被引:15
|
作者
Auger, Jean [1 ]
Creutzig, Thomas [1 ]
Ridout, David [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Vertex algebras; Conformal field theory; Modular transformations; Parafermions; Coset constructions; Primary; 17B69; Secondary; 13A50; EXTENDED CONFORMAL ALGEBRAS; OPERATOR-ALGEBRAS; VERLINDE FORMULAS; FUSION RULES; INVARIANT REPRESENTATIONS; LIE-ALGEBRAS; FIELD-THEORY; C-2-COFINITENESS; CONSTRUCTIONS; CHARACTERS;
D O I
10.1007/s11005-018-1098-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parafermionic cosets Ck = Com( H, Lk ( sl2)) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck. Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck, irreducible Ck -and Bk-modules are obtained from those of Lk ( sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The irreducible Ck -and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C2-cofinite vertex operator algebras.
引用
收藏
页码:2543 / 2587
页数:45
相关论文
共 50 条
  • [21] Logarithmic link invariants of (U)over-barHq (sl2) and asymptotic dimensions of singlet vertex algebras
    Creutzig, Thomas
    Milas, Antun
    Rupert, Matt
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (10) : 3224 - 3247
  • [22] LOGARITHMIC RESIDUES IN BANACH-ALGEBRAS
    BART, H
    EHRHARDT, T
    SILBERMANN, B
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 19 (02) : 135 - 152
  • [23] Lattice structure of modular vertex algebras
    Huang, Haihua
    Jing, Naihuan
    JOURNAL OF ALGEBRA, 2022, 592 : 1 - 17
  • [24] Li filtrations of SUSY vertex algebras
    Yanagida, Shintarou
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (05)
  • [25] Vertex algebras according to Isaac Newton
    Tuite, Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (41)
  • [26] Modularity conditions in Leibniz algebras
    Paez-Guillan, Pilar
    Siciliano, Salvatore
    Towers, David A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [27] Vertex algebroids and conformal vertex algebras associated with simple Leibniz algebras
    Thuy Bui
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2021, 586 : 357 - 401
  • [28] Ribbon tensor structure on the full representation categories of the singlet vertex algebras
    Creutzig, Thomas
    McRae, Robert
    Yang, Jinwei
    ADVANCES IN MATHEMATICS, 2023, 413
  • [29] On vertex Leibniz algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (12) : 2356 - 2370
  • [30] Associative algebras and the representation theory of grading-restricted vertex algebras
    Huang, Yi-Zhi
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (06)