共 50 条
Modularity of logarithmic parafermion vertex algebras
被引:15
|作者:
Auger, Jean
[1
]
Creutzig, Thomas
[1
]
Ridout, David
[2
]
机构:
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金:
澳大利亚研究理事会;
加拿大自然科学与工程研究理事会;
关键词:
Vertex algebras;
Conformal field theory;
Modular transformations;
Parafermions;
Coset constructions;
Primary;
17B69;
Secondary;
13A50;
EXTENDED CONFORMAL ALGEBRAS;
OPERATOR-ALGEBRAS;
VERLINDE FORMULAS;
FUSION RULES;
INVARIANT REPRESENTATIONS;
LIE-ALGEBRAS;
FIELD-THEORY;
C-2-COFINITENESS;
CONSTRUCTIONS;
CHARACTERS;
D O I:
10.1007/s11005-018-1098-4
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
The parafermionic cosets Ck = Com( H, Lk ( sl2)) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck. Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck, irreducible Ck -and Bk-modules are obtained from those of Lk ( sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The irreducible Ck -and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C2-cofinite vertex operator algebras.
引用
收藏
页码:2543 / 2587
页数:45
相关论文