Modularity of logarithmic parafermion vertex algebras

被引:15
作者
Auger, Jean [1 ]
Creutzig, Thomas [1 ]
Ridout, David [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Vertex algebras; Conformal field theory; Modular transformations; Parafermions; Coset constructions; Primary; 17B69; Secondary; 13A50; EXTENDED CONFORMAL ALGEBRAS; OPERATOR-ALGEBRAS; VERLINDE FORMULAS; FUSION RULES; INVARIANT REPRESENTATIONS; LIE-ALGEBRAS; FIELD-THEORY; C-2-COFINITENESS; CONSTRUCTIONS; CHARACTERS;
D O I
10.1007/s11005-018-1098-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parafermionic cosets Ck = Com( H, Lk ( sl2)) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck. Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck, irreducible Ck -and Bk-modules are obtained from those of Lk ( sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The irreducible Ck -and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C2-cofinite vertex operator algebras.
引用
收藏
页码:2543 / 2587
页数:45
相关论文
共 76 条
[11]  
Arakawa T, 2017, SEL MATH-NEW SER, V23, P2369, DOI 10.1007/s00029-017-0340-8
[12]  
Arakawa T, 2017, COMMUN MATH PHYS, V355, P339, DOI 10.1007/s00220-017-2901-2
[13]   Zhu's algebra, C2-algebra and C2-cofiniteness of parafermion vertex operator algebras [J].
Arakawa, Tomoyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
ADVANCES IN MATHEMATICS, 2014, 264 :261-295
[14]   W-SYMMETRY IN CONFORMAL FIELD-THEORY [J].
BOUWKNEGT, P ;
SCHOUTENS, K .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (04) :183-276
[15]   Graded parafermions [J].
Camino, JM ;
Ramallo, AV ;
de Santos, JMS .
NUCLEAR PHYSICS B, 1998, 530 (03) :715-741
[16]   Fusion rules for the logarithmic N=1 superconformal minimal models II: Including the Ramond sector [J].
Canagasabey, Michael ;
Ridout, David .
NUCLEAR PHYSICS B, 2016, 905 :132-187
[17]   Fusion rules for the logarithmic N=1 superconformal minimal models: I. The Neveu-Schwarz sector [J].
Canagasabey, Michael ;
Rasmussen, Jorgen ;
Ridout, David .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (41)
[18]   Nonmeromorphic operator product expansion and C2-cofiniteness for a family of W-algebras [J].
Carqueville, N ;
Flohr, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04) :951-966
[19]   Branes in the GL(1|1) WZNW model [J].
Creutzig, T. ;
Quella, T. ;
Schomerus, V. .
NUCLEAR PHYSICS B, 2008, 792 (03) :257-283
[20]  
Creutzig T., THEORY C2 COFINITE V