Modularity of logarithmic parafermion vertex algebras

被引:15
作者
Auger, Jean [1 ]
Creutzig, Thomas [1 ]
Ridout, David [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Vertex algebras; Conformal field theory; Modular transformations; Parafermions; Coset constructions; Primary; 17B69; Secondary; 13A50; EXTENDED CONFORMAL ALGEBRAS; OPERATOR-ALGEBRAS; VERLINDE FORMULAS; FUSION RULES; INVARIANT REPRESENTATIONS; LIE-ALGEBRAS; FIELD-THEORY; C-2-COFINITENESS; CONSTRUCTIONS; CHARACTERS;
D O I
10.1007/s11005-018-1098-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parafermionic cosets Ck = Com( H, Lk ( sl2)) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck. Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck, irreducible Ck -and Bk-modules are obtained from those of Lk ( sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The irreducible Ck -and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C2-cofinite vertex operator algebras.
引用
收藏
页码:2543 / 2587
页数:45
相关论文
共 76 条
[1]  
Abe T, 2007, MATH Z, V255, P755, DOI 10.1007/s00209-006-0048-5
[3]   On the triplet vertex algebra W(p) [J].
Adamovic, Drazen ;
Milas, Antun .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2664-2699
[4]  
Adamovic D, 2019, COMMUN MATH PHYS, V366, P1025, DOI 10.1007/s00220-019-03328-4
[5]   Some applications and constructions of intertwining operators in Logarithmic Conformal Field Theory [J].
Adamovic, Drazen ;
Milas, Antun .
LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS, AND RELATED TOPICS, 2017, 695 :15-27
[6]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[7]   The N=1 Triplet Vertex Operator Superalgebras: Twisted Sector [J].
Adamovic, Drazen ;
Milas, Antun .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
[8]   The N=1 Triplet Vertex Operator Superalgebras [J].
Adamovic, Drazen ;
Milas, Antun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (01) :225-270
[9]  
[Anonymous], 1993, PROGR MATH
[10]  
[Anonymous], ARXIV10124193