Quasi-local energy with respect to a static spacetime

被引:0
|
作者
Chen, Po-Ning [1 ]
Wang, Mu-Tao [2 ]
Wang, Ye-Kai [3 ]
Yau, Shing-Tung [4 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[3] Natl Cheng Kung Univ, Dept Math, 1 Dasyue Rd, Tainan 70101, Taiwan
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
INITIAL DATA SETS; CONSERVED QUANTITIES; GENERAL-RELATIVITY; MANIFOLDS; PROOF;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
This article considers the quasi-local energy in reference to a general static spacetime. We follow the approach developed by the authors in [7, 9, 19, 20] and define the quasi-local energy as a difference of surface Hamiltonians, which are derived from the Einstein-Hilbert action. The new quasi-local energy provides an effective gauge independent measurement of how far a spacetime deviates away from the reference static spacetime on a finitely extended region.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] Quasi-local energy in presence of gravitational radiation
    Chen, Po-Ning
    Wang, Mu-Tao
    Yau, Shing-Tung
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (13):
  • [22] Quasi-local energy for spherically symmetric spacetimes
    Ming-Fan Wu
    Chiang-Mei Chen
    Jian-Liang Liu
    James M. Nester
    General Relativity and Gravitation, 2012, 44 : 2401 - 2417
  • [23] Quasi-local energy from a Minkowski reference
    Chiang-Mei Chen
    Jian-Liang Liu
    James M. Nester
    General Relativity and Gravitation, 2018, 50
  • [24] QUASI-LOCAL MASS CONSTRUCTIONS WITH POSITIVE ENERGY
    DOUGAN, AJ
    MASON, LJ
    PHYSICAL REVIEW LETTERS, 1991, 67 (16) : 2119 - 2122
  • [25] SPINORS AND THE REFERENCE POINT OF QUASI-LOCAL ENERGY
    LAU, SR
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (04) : 1063 - 1079
  • [26] On a quasi-local mass
    Zhang, Xiao
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (24)
  • [27] Minimizing Properties of Critical Points of Quasi-Local Energy
    Po-Ning Chen
    Mu-Tao Wang
    Shing-Tung Yau
    Communications in Mathematical Physics, 2014, 329 : 919 - 935
  • [28] Critical Points of Wang–Yau Quasi-Local Energy
    Pengzi Miao
    Luen-Fai Tam
    Naqing Xie
    Annales Henri Poincaré, 2011, 12 : 987 - 1017
  • [29] Quasi-local energy and Oppenheimer-Snyder collapse*
    He, Xiaokai
    Xie, Naqing
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (18)
  • [30] Weighing the black hole via quasi-local energy
    Ha, Yuan K.
    MODERN PHYSICS LETTERS A, 2017, 32 (24)