The Use of Artificial Intelligence in the Evaluation of Knee Pathology

被引:18
作者
Garwood, Elisabeth R. [1 ,2 ]
Tai, Ryan [1 ,2 ]
Joshi, Ganesh [1 ,2 ]
Watts, George J. [1 ,2 ]
机构
[1] Univ Massachusetts, Mem Med Ctr, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Worcester, MA 01655 USA
[2] Univ Massachusetts, Med Sch, 55 Lake Ave North, Worcester, MA 01655 USA
关键词
artificial intelligence; magnetic resonance imaging; deep learning; knee; ANTERIOR CRUCIATE LIGAMENT; MENISCAL TEARS; OSTEOARTHRITIS; DIAGNOSIS; ARTHRITIS; INJURIES;
D O I
10.1055/s-0039-3400264
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) holds the potential to revolutionize the field of radiology by increasing the efficiency and accuracy of both interpretive and noninterpretive tasks. We have only just begun to explore AI applications in the diagnostic evaluation of knee pathology. Experimental algorithms have already been developed that can assess the severity of knee osteoarthritis from radiographs, detect and classify cartilage lesions, meniscal tears, and ligament tears on magnetic resonance imaging, provide automatic quantitative assessment of tendon healing, detect fractures on radiographs, and predict those at highest risk for recurrent bone tumors. This article reviews and summarizes the most current literature.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Evaluation of artificial intelligence models for osteoarthritis of the knee using deep learning algorithms for orthopedic radiographs
    Tiwari, Anjali
    Poduval, Murali
    Bagaria, Vaibhav
    WORLD JOURNAL OF ORTHOPEDICS, 2022, 13 (06): : 603 - 614
  • [2] Artificial Intelligence in Pathology
    Chang, Hye Yoon
    Jung, Chan Kwon
    Woo, Junwoo Isaac
    Lee, Sanghun
    Cho, Joonyoung
    Kim, Sun Woo
    Kwak, Tae-Yeong
    JOURNAL OF PATHOLOGY AND TRANSLATIONAL MEDICINE, 2019, 53 (01) : 1 - 12
  • [3] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Eminaga, Okyaz
    Abbas, Mahmoud
    Kunder, Christian
    Tolkach, Yuri
    Han, Ryan
    Brooks, James D.
    Nolley, Rosalie
    Semjonow, Axel
    Boegemann, Martin
    West, Robert
    Long, Jin
    Fan, Richard E.
    Bettendorf, Olaf
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [4] Artificial intelligence in computational pathology - challenges and future directions
    Morales, Sandra
    Engan, Kjersti
    Naranjo, Valery
    DIGITAL SIGNAL PROCESSING, 2021, 119
  • [5] Systematic review of artificial intelligence development and evaluation for MRI diagnosis of knee ligament or meniscus tears
    Santomartino, Samantha M. M.
    Kung, Justin
    Yi, Paul H. H.
    SKELETAL RADIOLOGY, 2024, 53 (03) : 445 - 454
  • [6] Artificial intelligence applied to breast pathology
    Mustafa Yousif
    Paul J. van Diest
    Arvydas Laurinavicius
    David Rimm
    Jeroen van der Laak
    Anant Madabhushi
    Stuart Schnitt
    Liron Pantanowitz
    Virchows Archiv, 2022, 480 : 191 - 209
  • [7] Artificial intelligence applied to breast pathology
    Yousif, Mustafa
    van Diest, Paul J.
    Laurinavicius, Arvydas
    Rimm, David
    van der Laak, Jeroen
    Madabhushi, Anant
    Schnitt, Stuart
    Pantanowitz, Liron
    VIRCHOWS ARCHIV, 2022, 480 (01) : 191 - 209
  • [8] Artificial Intelligence in the Pathology of Gastric Cancer
    Choi, Sangjoon
    Kim, Seokhwi
    JOURNAL OF GASTRIC CANCER, 2023, 23 (03) : 410 - 427
  • [9] An Update on the Use of Artificial Intelligence in Digital Pathology for Oral Epithelial Dysplasia Research
    Alajaji, Shahd A.
    Khoury, Zaid H.
    Jessri, Maryam
    Sciubba, James J.
    Sultan, Ahmed S.
    HEAD & NECK PATHOLOGY, 2024, 18 (01)
  • [10] Systematic Analysis of Artificial Intelligence in Pathology
    Uppala, Divya
    Ogirala, Smyrna
    Gadam, Leela Lavanya
    Kumar, Tompala Vinod
    ORAL & MAXILLOFACIAL PATHOLOGY JOURNAL, 2023, 14 (01) : 142 - 144