The effect of through-thickness compressive stress on mode II interlaminar crack propagation: A computational micromechanics approach

被引:25
作者
Varandas, L. F. [1 ]
Arteiro, A. [2 ]
Bessa, M. A. [3 ]
Melro, A. R. [4 ]
Catalanotti, G. [5 ]
机构
[1] INEGI, Rua Dr Roberto Frias 400, P-4200465 Oporto, Portugal
[2] Univ Porto, Fac Engn, DEMec, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal
[3] CALTECH, Grad Aerosp Labs, Pasadena, CA 91125 USA
[4] Univ Bristol, Adv Composites Ctr Sci & Innovat ACCIS, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England
[5] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast BT9 5AH, Antrim, North Ireland
关键词
Delamination; Fracture toughness; Computational mechanics; Finite element analysis (FEA); Through-thickness compressive stress; FRACTURE-TOUGHNESS; PART II; COMPOSITES; FIBERS; MATRIX; GROWTH; DAMAGE;
D O I
10.1016/j.compstruct.2017.09.020
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A micromechanics framework for modelling the mode II interlaminar crack onset and propagation in fibrere-inforced composites is presented with the aim of i) modelling the micro-scale failure mechanisms that underlie interlaminar crack propagation, and ii) determining the effect of the through-thickness pressure on mode II fracture toughness. An algorithm for the generation of the fibre distribution is proposed for the generation of three-dimensional Representative Volume Elements (RVEs). Appropriate constitutive models are used to model the different dissipative effects that occur at crack propagation. Numerical predictions are compared with experiments obtained in previous investigations: it is concluded that the proposed micromechanical model is able to simulate conveniently the interlaminar crack propagation and to take into account the effect of the through-thickness pressure on mode II interlaminar fracture toughness.
引用
收藏
页码:326 / 334
页数:9
相关论文
共 24 条
  • [1] [Anonymous], 2013, ASTM D5528-13
  • [2] [Anonymous], 2013, D6671D6671M13E1 ASTM
  • [3] Micro-mechanical analysis of the in situ effect in polymer composite laminates
    Arteiro, A.
    Catalanotti, G.
    Melro, A. R.
    Linde, P.
    Camanho, P. P.
    [J]. COMPOSITE STRUCTURES, 2014, 116 : 827 - 840
  • [4] ASTM, 2014, ASTM D7905/D7905M-14
  • [5] Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
    Benzeggagh, ML
    Kenane, M
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 1996, 56 (04) : 439 - 449
  • [6] Effect of compressive transverse normal stress on mode II fracture toughness in polymeric composites
    Bing, Qida
    Sun, C. T.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2007, 145 (02) : 89 - 97
  • [7] Three-dimensional deformation mapping of Mode I interlaminar crack extension in particle-toughened interlayers
    Borstnar, G.
    Gillard, F.
    Mavrogordato, M. N.
    Sinclair, I.
    Spearing, S. M.
    [J]. ACTA MATERIALIA, 2016, 103 : 63 - 70
  • [8] Delamination growth directionality and the subsequent migration processes - The key to damage tolerant design
    Canturri, Carla
    Greenhalgh, Emile S.
    Pinho, Silvestre T.
    Ankersen, Jesper
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 54 : 79 - 87
  • [9] The influence of hydrostatic pressure on the interlaminar fracture toughness of carbon/epoxy composites
    Cartié, D
    Davies, P
    Peleau, M
    Partridge, IK
    [J]. COMPOSITES PART B-ENGINEERING, 2006, 37 (4-5) : 292 - 300
  • [10] On the generation of RVE-based models of composites reinforced with long fibres or spherical particles
    Catalanotti, G.
    [J]. COMPOSITE STRUCTURES, 2016, 138 : 84 - 95