Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis

被引:17
|
作者
Peng, Donghai [1 ]
Xu, Xiaohui [1 ]
Ruan, Lifang [1 ]
Yu, Ziniu [1 ]
Sun, Ming [1 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, Coll Life Sci & Technol, Wuhan 430070, Peoples R China
关键词
Cadherin fragment; Coexpression; Cry1Ac insecticidal protein; Synergism; TOXIN-BINDING CADHERIN; HELIOTHIS-VIRESCENS; AMINOPEPTIDASE-N; PRE-PORE; RECEPTOR; CLONING; MEMBRANE; LARVAE; IDENTIFICATION; ENHANCEMENT;
D O I
10.1016/j.resmic.2010.04.004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Insect cadherin proteins localized in the midgut epithelium were identified as receptors for Bacillus thuringiensis insecticidal crystal proteins (Cry toxins). These cadherins facilitated toxin monomer oligomerization and mediated oligomer binding to secondary receptors. It has been reported that Manduca sexta, Helicoverpa armigera, Anopheles gambiae and Diabrotica virgifera cadherin toxin binding regions function as synergists for Cry1A, Cry4Ba and Cry3A toxicity against target insects. In the present study, the toxin binding region fragment of the H. armigera cadherin (hacad1) gene was cloned and fused with the promoter of the cry3Aa gene. The fusion gene pro3Aa-hacad1 and the cry1Ac gene were inserted into shuttle vector pHT304 and introduced into B. thuringiensis acrystalliferous strain BMB171 for coexpression (resulting in recombinant strain BMB1073). SDS-PAGE and mass spectrum analysis showed that BMB1073 could express HaCad1 and Cry1Ac proteins together. Bioassay results demonstrated that insecticidal activities against H. armigera and Spodoptera exigua could be increased 5.1-fold and 6.5-fold, respectively, by BMB1073 compared with the strain which can only express the Cry1Ac protein. Our discovery showed that coexpression of HaCad1 and Cry1Ac toxin in B. thuringiensis enhanced the insecticidal activity of Cry1Ac toward Lepidoptera insects. This finding also revealed a novel strategy for engineering strains and transgenic plants with higher insecticidal activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:383 / 389
页数:7
相关论文
共 50 条
  • [1] Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment
    Liu, Chenxi
    Wu, Kongming
    Wu, Yidong
    Gao, Yulin
    Ning, Changming
    Oppert, Brenda
    JOURNAL OF INSECT PHYSIOLOGY, 2009, 55 (08) : 686 - 693
  • [2] ATP Synthase Subunit a from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity
    Yao, Xue
    Duan, Yunpeng
    Deng, Zhongyuan
    Zhao, Wenli
    Wei, Jizhen
    Li, Xianchun
    An, Shiheng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (15) : 6155 - 6163
  • [3] Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera
    Zhao, Jing
    Jin, Lin
    Yang, Yihua
    Wu, Yidong
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2010, 40 (02) : 113 - 118
  • [4] Synergistic selection of a Helicoverpa armigera cadherin fragment with Cry1Ac in different cells and insects
    Hao, Jia
    Gao, Meijing
    Hu, Xiaodan
    Lu, Lina
    Zhang, Xiao
    Liu, Yuan
    Zhong, Jianfeng
    Liu, Xianjin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 164 : 3667 - 3675
  • [5] Mechanisms of feeding cessation in Helicoverpa armigera larvae exposed to Bacillus thuringiensis Cry1Ac toxin
    Li, Kaixia
    Yu, Shan
    Yang, Yihua
    He, Ya-Zhou
    Wu, Yidong
    PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2023, 195
  • [6] Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation
    Peng, Donghai
    Xu, Xiaohui
    Ye, Weixing
    Yu, Ziniu
    Sun, Ming
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (04) : 1033 - 1040
  • [7] Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac
    Yang, Y-H.
    Yang, Y-J.
    Gao, W-Y.
    Guo, J-J.
    Wu, Y-H.
    Wu, Y-D.
    BULLETIN OF ENTOMOLOGICAL RESEARCH, 2009, 99 (02) : 175 - 181
  • [8] The Cadherin Cry1Ac Binding-Region is Necessary for the Cooperative Effect with ABCC2 Transporter Enhancing Insecticidal Activity of Bacillus thuringiensis Cry1Ac Toxin
    Ma, Yuemin
    Zhang, Jianfeng
    Xiao, Yutao
    Yang, Yanchao
    Liu, Chenxi
    Peng, Rong
    Yang, Yongbo
    Bravo, Alejandra
    Soberon, Mario
    Liu, Kaiyu
    TOXINS, 2019, 11 (09)
  • [9] A single linkage group confers dominant resistance to Bacillus thuringiensis δ-endotoxin Cry1Ac in Helicoverpa armigera
    Wu, Y.
    Vassal, J. -M.
    Royer, M.
    Pieretti, I.
    JOURNAL OF APPLIED ENTOMOLOGY, 2009, 133 (05) : 375 - 380
  • [10] Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin
    Zhang, Shaoping
    Cheng, Hongmei
    Gao, Yulin
    Wang, Guirong
    Liang, Gemei
    Wu, Kongming
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2009, 39 (07) : 421 - 429