Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis

被引:17
|
作者
Peng, Donghai [1 ]
Xu, Xiaohui [1 ]
Ruan, Lifang [1 ]
Yu, Ziniu [1 ]
Sun, Ming [1 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, Coll Life Sci & Technol, Wuhan 430070, Peoples R China
关键词
Cadherin fragment; Coexpression; Cry1Ac insecticidal protein; Synergism; TOXIN-BINDING CADHERIN; HELIOTHIS-VIRESCENS; AMINOPEPTIDASE-N; PRE-PORE; RECEPTOR; CLONING; MEMBRANE; LARVAE; IDENTIFICATION; ENHANCEMENT;
D O I
10.1016/j.resmic.2010.04.004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Insect cadherin proteins localized in the midgut epithelium were identified as receptors for Bacillus thuringiensis insecticidal crystal proteins (Cry toxins). These cadherins facilitated toxin monomer oligomerization and mediated oligomer binding to secondary receptors. It has been reported that Manduca sexta, Helicoverpa armigera, Anopheles gambiae and Diabrotica virgifera cadherin toxin binding regions function as synergists for Cry1A, Cry4Ba and Cry3A toxicity against target insects. In the present study, the toxin binding region fragment of the H. armigera cadherin (hacad1) gene was cloned and fused with the promoter of the cry3Aa gene. The fusion gene pro3Aa-hacad1 and the cry1Ac gene were inserted into shuttle vector pHT304 and introduced into B. thuringiensis acrystalliferous strain BMB171 for coexpression (resulting in recombinant strain BMB1073). SDS-PAGE and mass spectrum analysis showed that BMB1073 could express HaCad1 and Cry1Ac proteins together. Bioassay results demonstrated that insecticidal activities against H. armigera and Spodoptera exigua could be increased 5.1-fold and 6.5-fold, respectively, by BMB1073 compared with the strain which can only express the Cry1Ac protein. Our discovery showed that coexpression of HaCad1 and Cry1Ac toxin in B. thuringiensis enhanced the insecticidal activity of Cry1Ac toward Lepidoptera insects. This finding also revealed a novel strategy for engineering strains and transgenic plants with higher insecticidal activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:383 / 389
页数:7
相关论文
共 50 条
  • [1] Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment
    Liu, Chenxi
    Wu, Kongming
    Wu, Yidong
    Gao, Yulin
    Ning, Changming
    Oppert, Brenda
    JOURNAL OF INSECT PHYSIOLOGY, 2009, 55 (08) : 686 - 693
  • [2] Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera
    Xu, XJ
    Yu, LY
    Wu, YD
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (02) : 948 - 954
  • [3] Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera
    Zhao, Jing
    Jin, Lin
    Yang, Yihua
    Wu, Yidong
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2010, 40 (02) : 113 - 118
  • [4] ATP Synthase Subunit a from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity
    Yao, Xue
    Duan, Yunpeng
    Deng, Zhongyuan
    Zhao, Wenli
    Wei, Jizhen
    Li, Xianchun
    An, Shiheng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (15) : 6155 - 6163
  • [5] Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hubner)
    Zhang, Caihong
    Wei, Jizhen
    Naing, Zaw Lin
    Soe, Ei Thinzar
    Liang, Gemei
    PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2021, 175
  • [6] Inheritance of resistance in Indian Helicoverpa armigera (Hubner) to Cry1Ac toxin of Bacillus thuringiensis
    Kranthi, KR
    Dhawad, CS
    Naidu, SR
    Mate, K
    Behere, GT
    Wadaskar, RM
    Kranthi, S
    CROP PROTECTION, 2006, 25 (02) : 119 - 124
  • [7] Synergistic selection of a Helicoverpa armigera cadherin fragment with Cry1Ac in different cells and insects
    Hao, Jia
    Gao, Meijing
    Hu, Xiaodan
    Lu, Lina
    Zhang, Xiao
    Liu, Yuan
    Zhong, Jianfeng
    Liu, Xianjin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 164 : 3667 - 3675
  • [8] Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac
    Yang, Y-H.
    Yang, Y-J.
    Gao, W-Y.
    Guo, J-J.
    Wu, Y-H.
    Wu, Y-D.
    BULLETIN OF ENTOMOLOGICAL RESEARCH, 2009, 99 (02) : 175 - 181
  • [9] Comparative toxicity of Cry1Ac and Cry2Aa δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (H.)
    Babu, BG
    Udayasuriyan, V
    Mariam, MA
    Sivakumar, NC
    Bharathi, M
    Balasubramanian, G
    CROP PROTECTION, 2002, 21 (09) : 817 - 822
  • [10] Mutated cadherin Alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac
    Yang, Yajun
    Chen, Haiyan
    Wu, Yidong
    Yang, Yihua
    Wu, Shuwen
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (21) : 6939 - 6944