A GENERAL FRAMEWORK FOR VALIDATED CONTINUATION OF PERIODIC ORBITS IN SYSTEMS OF POLYNOMIAL ODES

被引:8
作者
van den Berg, Jan Bouwe [1 ]
Queirolo, Elena [2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[2] Rutgers State Univ, Dept Math, 110 Frelinghusen Rd, Piscataway, NJ 08854 USA
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2021年 / 8卷 / 01期
关键词
Validated numerics; periodic orbits; continuation; solution branch; polynomial ODEs; BIFURCATION DIAGRAM; RIGOROUS NUMERICS; EQUATION;
D O I
10.3934/jcd.2021004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a parametrized Newton-Kantorovich approach is applied to continuation of periodic orbits in arbitrary polynomial vector fields. This allows us to rigorously validate numerically computed branches of periodic solutions. We derive the estimates in full generality and present sample continuation proofs obtained using an implementation in Matlab. The presented approach is applicable to any polynomial vector field of any order and dimension. A variety of examples is presented to illustrate the efficacy of the method.
引用
收藏
页码:59 / 97
页数:39
相关论文
共 50 条
  • [41] Periodic Orbits of Linear Filippov Systems with a Line of Discontinuity
    Tao Li
    Xingwu Chen
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [42] ON THE CONTROL OF STABILITY OF PERIODIC ORBITS OF COMPLETELY INTEGRABLE SYSTEMS
    Tudoran, Razvan M.
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (01) : 109 - 124
  • [43] Bifurcation of periodic orbits in a class of planar Filippov systems
    Du, Zhengdong
    Li, Yurong
    Zhang, Weinian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) : 3610 - 3628
  • [44] Periodic Orbits of Linear Filippov Systems with a Line of Discontinuity
    Li, Tao
    Chen, Xingwu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [45] Periodic orbits and chaos in a class of discrete dynamic systems
    Zhang, YD
    Liu, ST
    Liu, YQ
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 3247 - 3250
  • [46] PERIODIC ORBITS OF HAMILTONIAN SYSTEMS LINEAR AND HYPERBOLIC AT INFINITY
    Guerel, Basak Z.
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (01) : 159 - 182
  • [47] Influence of periodic orbits on the formation of giant planetary systems
    Anne-Sophie Libert
    Sotiris Sotiriadis
    Kyriaki I. Antoniadou
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [48] On the existence and stability of periodic orbits in non ideal problems: General results
    Dantas, Marcio Jose Horta
    Balthazar, Jose Manoel
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 940 - 958
  • [49] On the existence and stability of periodic orbits in non ideal problems: General results
    Márcio José Horta Dantas
    José Manoel Balthazar
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 940 - 958
  • [50] Continuation of some nearly circular symmetric periodic orbits in the elliptic restricted three-body problem
    Xing-Bo Xu
    Ye-Zhi Song
    Astrophysics and Space Science, 2023, 368