A GENERAL FRAMEWORK FOR VALIDATED CONTINUATION OF PERIODIC ORBITS IN SYSTEMS OF POLYNOMIAL ODES

被引:8
|
作者
van den Berg, Jan Bouwe [1 ]
Queirolo, Elena [2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[2] Rutgers State Univ, Dept Math, 110 Frelinghusen Rd, Piscataway, NJ 08854 USA
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2021年 / 8卷 / 01期
关键词
Validated numerics; periodic orbits; continuation; solution branch; polynomial ODEs; BIFURCATION DIAGRAM; RIGOROUS NUMERICS; EQUATION;
D O I
10.3934/jcd.2021004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a parametrized Newton-Kantorovich approach is applied to continuation of periodic orbits in arbitrary polynomial vector fields. This allows us to rigorously validate numerically computed branches of periodic solutions. We derive the estimates in full generality and present sample continuation proofs obtained using an implementation in Matlab. The presented approach is applicable to any polynomial vector field of any order and dimension. A variety of examples is presented to illustrate the efficacy of the method.
引用
收藏
页码:59 / 97
页数:39
相关论文
共 50 条
  • [11] Continuation and bifurcations of periodic orbits and symbolic dynamics in the Swift-Hohenberg equation
    Czwornog, Jakub
    Wilczak, Daniel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142
  • [12] Periodic signal analysis by maximum likelihood modeling of orbits of nonlinear ODEs
    Söderström, T
    Wigren, T
    Abd-Elrady, E
    AUTOMATICA, 2005, 41 (05) : 793 - 805
  • [13] Periodic orbits in gravitational systems
    Hadjedemetriou, John D.
    Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, 2006, 227 : 43 - 79
  • [14] Bifurcation analysis of piecewise-smooth engineering systems with delays through numeric continuation of periodic orbits
    Iklodi, Zsolt
    Dombovari, Zoltan
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21789 - 21818
  • [15] ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS
    Sanchez, Juan
    Net, Marta
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 43 - 61
  • [16] Continuation and stationkeeping analyses on planar retrograde periodic orbits around the Earth
    Oshima, Kenta
    ADVANCES IN SPACE RESEARCH, 2022, 69 (05) : 2210 - 2222
  • [17] Influence of periodic orbits on the formation of giant planetary systems
    Libert, Anne-Sophie
    Sotiriadis, Sotiris
    Antoniadou, Kyriaki I.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (02)
  • [18] Finding unstable periodic orbits: A hybrid approach with polynomial optimization
    Lakshmi, Mayur V.
    Fantuzzi, Giovanni
    Chernyshenko, Sergei I.
    lasagna, DaviDe
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 427 (427)
  • [19] Periodic orbits on discrete dynamical systems
    Zhou, Z
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (6-9) : 1155 - 1161
  • [20] Bifurcation of periodic orbits in discontinuous systems
    Hosham, Hany A.
    NONLINEAR DYNAMICS, 2017, 87 (01) : 135 - 148