A GENERAL FRAMEWORK FOR VALIDATED CONTINUATION OF PERIODIC ORBITS IN SYSTEMS OF POLYNOMIAL ODES

被引:8
|
作者
van den Berg, Jan Bouwe [1 ]
Queirolo, Elena [2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[2] Rutgers State Univ, Dept Math, 110 Frelinghusen Rd, Piscataway, NJ 08854 USA
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2021年 / 8卷 / 01期
关键词
Validated numerics; periodic orbits; continuation; solution branch; polynomial ODEs; BIFURCATION DIAGRAM; RIGOROUS NUMERICS; EQUATION;
D O I
10.3934/jcd.2021004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a parametrized Newton-Kantorovich approach is applied to continuation of periodic orbits in arbitrary polynomial vector fields. This allows us to rigorously validate numerically computed branches of periodic solutions. We derive the estimates in full generality and present sample continuation proofs obtained using an implementation in Matlab. The presented approach is applicable to any polynomial vector field of any order and dimension. A variety of examples is presented to illustrate the efficacy of the method.
引用
收藏
页码:59 / 97
页数:39
相关论文
共 50 条
  • [1] On the continuation of degenerate periodic orbits in Hamiltonian systems
    Meletlidou, E
    Stagika, G
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (01) : 131 - 138
  • [2] On periodic orbits of polynomial relay systems
    Jacquemard, Alain
    Pereira, Weber Flavio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (02) : 331 - 347
  • [3] Continuation of periodic orbits in symmetric Hamiltonian and conservative systems
    J. Galan-Vioque
    F. J. M. Almaraz
    E. F. Macías
    The European Physical Journal Special Topics, 2014, 223 : 2705 - 2722
  • [4] Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems
    Net, M.
    Sanchez, J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 674 - 698
  • [5] Validated computations for connecting orbits in polynomial vector fields
    van den Berg, Jan Bouwe
    Sheombarsing, Ray
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (02): : 310 - 373
  • [6] High-Precision Continuation of Periodic Orbits
    Dena, Angeles
    Rodriguez, Marcos
    Serrano, Sergio
    Barrio, Roberto
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [7] Localization of periodic orbits of polynomial Sprott systems with one or two quadratic monomials
    Starkov, KE
    Coria, L
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (03) : 271 - 277
  • [8] ON THE BIFURCATION AND CONTINUATION OF PERIODIC ORBITS IN THE THREE BODY PROBLEM
    Antoniadou, K. I.
    Voyatzis, G.
    Kotoulas, T.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08): : 2211 - 2219
  • [9] Validated numerics for period-tupling and touch-and-go bifurcations of symmetric periodic orbits in reversible systems
    Walawska, Irmina
    Wilczak, Daniel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 74 : 30 - 54
  • [10] Resonant periodic orbits in the exoplanetary systems
    Antoniadou, K. I.
    Voyatzis, G.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 657 - 676