Ranks of dense alternating sign matrices and their sign patterns

被引:3
作者
Fiedler, Miroslav [1 ]
Gao, Wei [2 ]
Hall, Frank J. [2 ]
Jing, Guangming [2 ]
Li, Zhongshan [2 ]
Stroev, Mikhail [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
Alternating sign matrix; Rank; Dense matrix; Sign pattern matrix; Minimum rank; Maximum rank; MINIMUM RANK;
D O I
10.1016/j.laa.2014.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an explicit formula for the ranks of dense alternating sign matrices is obtained. The minimum rank and the maximum rank of the sign pattern of a dense alternating sign matrix are determined. Some related results and examples are also provided. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 16 条
[1]   Rational realizations of the minimum rank of a sign pattern matrix [J].
Arav, M ;
Hall, FJ ;
Koyuncu, S ;
Li, ZS ;
Rao, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 :111-125
[2]  
Berman A, 2008, ELECTRON J COMB, V15
[3]  
Brualdi R.A., 1995, MATRICES SIGN SOLVAB
[4]  
Brualdi R.A., 2015, J COMBIN DE IN PRESS
[5]  
Brualdi R. A., 1991, Combinatorial Matrix Theory
[6]  
Brualdi R.A., 2015, GRAPHS COMB IN PRESS
[7]  
Brualdi RA, 2014, AUSTRALAS J COMB, V60, P333
[8]   Note on the spectral radius of alternating sign matrices [J].
Brualdi, Richard A. ;
Cooper, Joshua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 :99-105
[9]   Patterns of alternating sign matrices [J].
Brualdi, Richard A. ;
Kiernan, Kathleen P. ;
Meyer, Seth A. ;
Schroeder, Michael W. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) :3967-3990
[10]   Inverses and eigenvalues of diamond alternating sign matrices [J].
Catral, Minerva ;
Lin, Minghua ;
Olesky, D. D. ;
van den Driessche, P. .
SPECIAL MATRICES, 2014, 2 (01) :78-88