Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation

被引:149
作者
Deng, Yang [1 ]
Zhang, Ganwei [1 ]
Bai, Renbi [1 ]
Shen, Shusu [1 ]
Zhou, Xiaoji [1 ]
Wyman, Ian [2 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Environm Sci Engn,Ctr Separat & Purificat Mat, Natl & Local Joint Engn Lab Municipal Sewage Reso, Suzhou Key Lab Separat & Purificat Mat & Technol, Suzhou 215009, Peoples R China
[2] Queens Univ, Dept Chem, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
基金
中国国家自然科学基金;
关键词
Blend PVDF membrane; In situ crosslinking; Hydrophilic; Underwater superoleophobic; Oil/water emulsion separation; ULTRAFILTRATION MEMBRANES; CARBON NANOTUBE; WATER; COMPOSITE; IMPROVEMENT; FILTRATION; REMOVAL; SPONGE;
D O I
10.1016/j.memsci.2018.09.069
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Poly(methyl methacrylate-co-glycidyl methacrylate) P(MMA-co-GMA) and polyethyleneimine (PEI) were blended with poly(vinylidene fluoride) (PVDF) via phase separation and allowed to undergo in situ crosslinking copolymerization to produce a superhydrophilic and underwater superoleophobic membrane for oil/water emulsion separation. The P(MMA-co-GMA) copolymer served as a crosslinker for the crosslinking copolymerization of the hydrophilic PEI polymer. Both of these polymers were chosen to reduce losses of the hydrophilic polymers typically encountered during membrane preparation. The successful preparation of these coatings was demonstrated by TGA, SEM, ATR-FTIR and XPS characterization. Blending with the hydrophilic components significantly improved the hydrophilicity of the blend PVDF membranes. The membrane became superhydrophilic and superoleophobic underwater while also exhibiting underwater anti-oil-fouling performance. The blend PVDF membrane can intercept the oil droplets while allowing water to pass through, exhibiting excellent performance for oil/water emulsion separations. In addition, the blend PVDF membrane withstands repeated use and long-term operation due to the in situ crosslinking strategy employed.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [21] Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation
    Zhou, Cailong
    Cheng, Jiang
    Hou, Kun
    Zhao, An
    Pi, Pihui
    Wen, Xiufang
    Xu, Shouping
    CHEMICAL ENGINEERING JOURNAL, 2016, 301 : 249 - 256
  • [22] Facile fabrication of underwater superoleophobic TiO2 coated mesh for highly efficient oil/water separation
    Li, Jian
    Yan, Long
    Hu, Wenfang
    Li, Dianming
    Zha, Fei
    Lei, Ziqiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 489 : 441 - 446
  • [23] Facile fabrication of superhydrophilic and underwater superoleophobic chitosan-polyvinyl alcohol-TiO2 coated copper mesh for efficient oil/water separation
    You, Qiuying
    Ran, Guoxia
    Wang, Chan
    Zhao, Yuan
    Song, Qijun
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2018, 15 (05) : 1013 - 1023
  • [24] A novel superhydrophilic-underwater superoleophobic Zn-ZnO electrodeposited copper mesh for efficient oil/water separation
    You, Qiuying
    Ran, Guoxia
    Wang, Chan
    Zhao, Yuan
    Song, Qijun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 193 : 21 - 28
  • [25] Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions
    Ju, Junping
    Wang, Tingmei
    Wang, Qihua
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 481 : 151 - 157
  • [26] Superhydrophilic and underwater superoleophobic Ti foam with robust nanoarray structures of TiO2 for effective oil-in-water emulsion separation
    Zhang, Luhong
    Yang, Xiaodong
    Jiang, Bin
    Sun, Yongli
    Gong, Ziqiang
    Zhang, Na
    Hou, Shuai
    Li, Jingshuai
    Yang, Na
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 252 (252)
  • [27] Salt-Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA-g-PVDF Membranes for Effective Separation of Oil-in-Water Emulsions
    Zhang, Wenbin
    Zhu, Yuzhang
    Liu, Xia
    Wang, Dong
    Li, Jingye
    Jiang, Lei
    Jin, Jian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (03) : 856 - 860
  • [28] Superhydrophilic and underwater superoleophobic poly (acrylonitrile-co-methyl acrylate) membrane for highly efficient separation of oil-in-water emulsions
    Tan, Linli
    Han, Na
    Qian, Yongqiang
    Zhang, Haoran
    Gao, Hongkun
    Zhang, Longfei
    Zhang, Xingxiang
    JOURNAL OF MEMBRANE SCIENCE, 2018, 564 : 712 - 721
  • [29] Underwater superoleophobic cellulose/acrylamide-modified magnetic polyurethane foam for efficient oil/water separation
    Alazab, Ayman A.
    Saleh, Tawfik A.
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 302
  • [30] Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation
    Helali, Nusrat
    Rastgar, Masoud
    Ismail, Md Farhad
    Sadrzadeh, Mohtada
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 238 (238)