Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA

被引:37
作者
Aittokoski, T. [1 ]
Miettinen, K. [1 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Agora, Finland
关键词
efficient Pareto-optimal set approximation; multicriteria optimization; population-based approaches; Pareto-optimality; non-dominance; EMO; DECISION-MAKING; CONVERGENCE; ADAPTATION; ALGORITHM;
D O I
10.1080/10556780903548265
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Solving real-life engineering problems requires often multiobjective, global, and efficient (in terms of objective function evaluations) treatment. In this study, we consider problems of this type by discussing some drawbacks of the current methods and then introduce a new population-based multiobjective optimization algorithm UPS-EMOA which produces a dense (not limited to the population size) approximation of the Pareto-optimal set in a computationally effective manner.
引用
收藏
页码:841 / 858
页数:18
相关论文
共 53 条
[31]   Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning [J].
Monz, M. ;
Kuefer, K. H. ;
Bortfeld, T. R. ;
Thieke, C. .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (04) :985-998
[32]  
PESCHEL M, 1977, CONFLICTING OBJECTIV, P97
[33]  
PRICE K, 2006, DIFFERENTIAL EVOLUTI, DOI 10.1007/3-540-31306-0
[34]  
Purshouse RC, 2003, IEEE C EVOL COMPUTAT, P2066
[35]  
Raquel CR, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P257
[36]  
Robic T, 2005, LECT NOTES COMPUT SC, V3410, P520
[37]   Convergence of evolutionary algorithms in general search spaces [J].
Rudolph, G .
1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, :50-54
[38]  
Rudolph G, 2000, IEEE C EVOL COMPUTAT, P1010, DOI 10.1109/CEC.2000.870756
[39]  
RUDOLPH G, 1998, EVOLUTIONARY PROGRAM, V7, P345
[40]  
RUUSKA S, 2008, P INT C ENG OPT RIO