Probabilistic Reward-Based Reinforcement Learning for Multi-Agent Pursuit and Evasion

被引:1
|
作者
Zhang, Bo-Kun [1 ]
Hu, Bin [1 ]
Chen, Long [1 ]
Zhang, Ding-Xue [2 ]
Cheng, Xin-Ming [3 ]
Guan, Zhi-Hong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Yangtze Univ, Sch Petr Engn, Jingzhou 434023, Peoples R China
[3] Cent South Univ, Sch Automat, Changsha 430083, Peoples R China
来源
PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021) | 2021年
关键词
Reinforcement learning; Multi-agent; Pursuit-evasion; Probabilistic reward; SYSTEMS;
D O I
10.1109/CCDC52312.2021.9601771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The reinforcement learning is studied to solve the problem of multi-agent pursuit and evasion games in this article. The main problem of current reinforcement learning for multi-agents is the low learning efficiency of agents. An important factor leading to this problem is that the delay of the Q function is related to the environment changing. To solve this problem, a probabilistic distribution reward value is used to replace the Q function in the multi-agent depth deterministic policy gradient framework (hereinafter referred to as MADDPG). The distribution Bellman equation is proved to be convergent, and can be brought into the framework of reinforcement learning algorithm. The probabilistic distribution reward value is updated in the algorithm, so that the reward value can be more adaptive to the complex environment. In the same time, eliminating the delay of rewards improves the efficiency of the strategy and obtains a better pursuit-evasion results. The final simulation and experiment show that the multi-agent algorithm with distribution rewards achieves better results under the setting environment.
引用
收藏
页码:3352 / 3357
页数:6
相关论文
共 50 条
  • [21] Radar Waveform Design Based on Multi-Agent Reinforcement Learning
    Yang, Qingpei
    Han, Zhuangzhi
    Wang, Han
    Dong, Jian
    Zhao, Yang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (10)
  • [22] A Distributed Multi-Agent Dynamic Area Coverage Algorithm Based on Reinforcement Learning
    Xiao, Jian
    Wang, Gang
    Zhang, Ying
    Cheng, Lei
    IEEE ACCESS, 2020, 8 : 33511 - 33521
  • [23] Multi-Agent Reinforcement Learning-Based Distributed Dynamic Spectrum Access
    Albinsaid, Hasan
    Singh, Keshav
    Biswas, Sudip
    Li, Chih-Peng
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (02) : 1174 - 1185
  • [24] Mobile User Interface Adaptation Based on Usability Reward Model and Multi-Agent Reinforcement Learning
    Vidmanov, Dmitry
    Alfimtsev, Alexander
    MULTIMODAL TECHNOLOGIES AND INTERACTION, 2024, 8 (04)
  • [25] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [26] Reinforcement Learning for Multi-Agent Competitive Scenarios
    Coutinho, Manuel
    Reis, Luis Paulo
    2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2022, : 130 - 135
  • [27] Leaders and Collaborators: Addressing Sparse Reward Challenges in Multi-Agent Reinforcement Learning
    Sun, Shaoqi
    Liu, Hui
    Xu, Kele
    Ding, Bo
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [28] Specification Aware Multi-Agent Reinforcement Learning
    Ritz, Fabian
    Phan, Thomy
    Mueller, Robert
    Gabor, Thomas
    Sedlmeier, Andreas
    Zeller, Marc
    Wieghardt, Jan
    Schmid, Reiner
    Sauer, Horst
    Klein, Cornel
    Linnhoff-Popien, Claudia
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021, 2022, 13251 : 3 - 21
  • [29] Decentralized Multi-Agent Reinforcement Learning in Average-Reward Dynamic DCOPs
    Duc Thien Nguyen
    Yeoh, William
    Hoong Chuin Lau
    Zilberstein, Shlomo
    Zhang, Chongjie
    AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2014, : 1341 - 1342
  • [30] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413