On ps(x)-Laplacian Parabolic Problems with Non-Globally Lipschitz Forcing Term

被引:9
作者
Simsen, Jacson [1 ]
Simsen, Mariza S. [1 ]
Teixeira Primo, Marcos R. [2 ]
机构
[1] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2014年 / 33卷 / 04期
关键词
Variable exponents; electrorheological fluids; p(s)(x)-Laplacian; parabolic problems; global attractors; upper semicontinuity; VARIABLE EXPONENT; UPPER SEMICONTINUITY; EXISTENCE; EQUATIONS; ATTRACTORS; BEHAVIOR; DENSITY;
D O I
10.4171/ZAA/1522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove continuity of solutions with respect to initial conditions and exponent parameters and we prove upper semicontinuity of a family of global attractors for problems of the form partial derivative u(s)/partial derivative t - div(vertical bar del u(s)vertical bar(p)((x)-2)(s)del u(s)) + f(x, u(s)) - g, where f : Omega X R -> R is a non-globally Lispchitz Caratheodory mapping, g is an element of L-2 (Omega), Omega is a bounded smooth domain in R-n, n >= 1 and p(s)(center dot) -> p in L-infinity(Omega) (p > 2 constant) as s goes to infinity.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 33 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]   Nonlinear diffusion equations driven by the p(•)-Laplacian [J].
Akagi, Goro ;
Matsuura, Kei .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (01) :37-64
[3]   Existence theorems and qualitative properties of solutions to parabolic equations with a variable order of nonlinearity [J].
Alkhutov, Yu. A. ;
Zhikov, V. V. .
DOKLADY MATHEMATICS, 2010, 81 (01) :34-38
[4]   Nonlinear flow through double porosity media in variable exponent Sobolev spaces [J].
Amaziane, B. ;
Pankratov, L. ;
Piatnitski, A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2521-2530
[5]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[6]   Vanishing solutions of anisotropic parabolic equations with variable nonlinearity [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :371-391
[7]   Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity [J].
Antontsev S.N. ;
Shmarev S.I. .
Journal of Mathematical Sciences, 2008, 150 (5) :2289-2301
[8]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[9]   Homogenization of pε(x)-Laplacian in perforated domains with a nonlocal transmission condition [J].
Arnaziane, Brahim ;
Pankratov, Leonid ;
Prytula, Vladyslav .
COMPTES RENDUS MECANIQUE, 2009, 337 (03) :173-178
[10]   Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data [J].
Bendahmane, M. ;
Wittbold, P. ;
Zimmermann, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (06) :1483-1515