Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters

被引:24
作者
Arefi, Mohsen [1 ]
机构
[1] Univ Birjand, Fac Math Sci & Stat, Dept Stat, Birjand, Iran
关键词
Fuzzy number; Goodness of fit; Loss function; Fuzzy parameter; Quantile fuzzy regression; GOAL PROGRAMMING APPROACH; LEAST-SQUARES ESTIMATION; LINEAR-REGRESSION; MODEL;
D O I
10.1007/s00500-019-04424-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new approach is investigated to the problem of quantile regression modeling based on the fuzzy response variable and the fuzzy parameters. In this approach, we first introduce a loss function between fuzzy numbers which it can present some quantiles of fuzzy data. Then, we fit a quantile regression model between the available data based on proposed loss function. To evaluate the goodness of fit of the optimal quantile fuzzy regression models, we introduce two indices. Inside, we study the application of the proposed approach in modeling some soil characteristics, based on a real data set.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 45 条
[21]   A weighted goal programming approach to estimate the linear regression model in full quasi type-2 fuzzy environment [J].
Hosseinzadeh, Elham ;
Hassanpour, Hassan ;
Arefi, Mohsen .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) :1319-1330
[22]   Fuzzy least-absolutes regression using shape preserving operations [J].
Kelkinnama, M. ;
Taheri, S. M. .
INFORMATION SCIENCES, 2012, 214 :105-120
[23]  
Kim Kyung Joong, 2005, Journal of Applied Mathematics and Informatics, V18, P649
[24]  
Klir G.J., 1995, FUZZY SETS FUZZY LOG
[25]  
Koenker R., 2005, Quantile Regression, DOI DOI 10.1017/CBO9780511754098
[26]   Limit distributions of least squares estimators in linear regression models with vague concepts [J].
Krätschmer, V .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (05) :1044-1069
[27]   Strong consistency of least-squares estimation in linear regression models with vague concepts [J].
Krätschmer, V .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (03) :633-654
[28]   On robust fuzzy c-regression models [J].
Leski, Jacek M. ;
Kotas, Marian .
FUZZY SETS AND SYSTEMS, 2015, 279 :112-129
[29]   A Tabu-Harmony Search-Based Approach to Fuzzy Linear Regression [J].
Mashinchi, M. Hadi ;
Orgun, Mehmet A. ;
Mashinchi, Mashaallah ;
Pedrycz, Witold .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (03) :432-448
[30]  
Mohammadi J., 2004, Iranian Journal of Fuzzy Systems, V1, P45, DOI [10.22111/ijfs.2004.505, DOI 10.22111/IJFS.2004.505]