Convergence of a splitting inertial proximal method for monotone operators

被引:253
作者
Moudafi, A [1 ]
Oliny, M [1 ]
机构
[1] Univ Antilles Guyane, DSI, GRIMAAG, Schoelcher 97200, Martinique, France
关键词
monotone operators; enlargements; proximal point algorithm; cocoercivity; splitting algorithm; projection; convergence;
D O I
10.1016/S0377-0427(02)00906-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A forward-backward inertial procedure for solving the problem of finding a zero of the sum of two maximal monotone operators is proposed and its convergence is established under a cocoercivity condition with respect to the solution set. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:447 / 454
页数:8
相关论文
共 25 条
[2]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[3]  
Antipin A.S., 1989, VYCHISHTELNYE VOPROS, P5
[4]   The heavy ball with friction method, I. The continuous dynamical system: Global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system [J].
Attouch, H ;
Goudou, X ;
Redont, P .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (01) :1-34
[5]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[6]   ε-Enlargements of maximal monotone operators in Banach spaces [J].
Burachik, RS ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1999, 7 (02) :117-132
[7]   Convergence rates in forward-backward splitting [J].
Chen, GHG ;
Rockafellar, RT .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :421-444
[8]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[9]  
EKSTEIN J, 1989, THESIS MIT
[10]  
Gabay D., 1983, AUGMENTED LAGRANGIAN, V15, P299, DOI DOI 10.1016/S0168-2024(08)70034-1