Epidemiological inference from pathogen genomes: A review of phylodynamic models and applications

被引:13
|
作者
Featherstone, Leo A. [1 ]
Zhang, Joshua M. [1 ]
Vaughan, Timothy G. [2 ,3 ]
Duchene, Sebastian [1 ]
机构
[1] Univ Melbourne, Peter Doherty Inst Infect & Immun, Melbourne, Vic 3000, Australia
[2] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[3] Swiss Inst Bioinformat, CH-1015 Geneva, Switzerland
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
epidemiological models; phylodynamics; birth-death model; coalescent model; BAYESIAN COALESCENT INFERENCE; PAST POPULATION-DYNAMICS; HEPATITIS-C VIRUS; BIRTH; SKYLINE; TIME; TRANSMISSION; PHYLOGENIES; SPECIATION; FRAMEWORK;
D O I
10.1093/ve/veac045
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experienced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic models beginning with foundational models and assumptions. Our target audience is public health researchers, epidemiologists, and biologists seeking a working knowledge of the links between epidemiology, evolutionary models, and resulting epidemiological inference. We discuss the assumptions linking evolutionary models of pathogen population size to epidemiological models of the infected population size. We then describe statistical inference for phylodynamic models and list how output parameters can be rearranged for epidemiological interpretation. We go on to cover more sophisticated models and finish by highlighting future directions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Statistical inference for two Markov binomial models with applications
    Dumitrescu, M
    STATISTICAL PAPERS, 2002, 43 (04) : 579 - 585
  • [42] Statistical Inference and Applications of Mixture of Varying Coefficient Models
    Huang, Mian
    Wang, Shaoli
    Yao, Weixin
    Chen, Yixin
    SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (03) : 618 - 643
  • [43] Exploring laccase genes from plant pathogen genomes: a bioinformatic approach
    Feng, B. Z.
    Li, P. Q.
    Fu, L.
    Yu, X. M.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (04) : 14019 - 14036
  • [44] Tracking ranavirus infections: an integrative review of epidemiological research on pathogen dynamics in anurans
    Rodrigues, Davi dos Santos
    Maia, Rita de Cassia Carvalho
    de Moura, Geraldo Jorge Barbosa
    de Sousa, Ricardo Luiz Moro
    Pinheiro Junior, Jose Wilton
    WEB ECOLOGY, 2024, 24 (02) : 115 - 128
  • [45] Criminals and their models-a review of epidemiological models describing criminal behaviour
    Sooknanan, Joanna
    Seemungal, Terence A. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [46] Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models
    Angelini, Giovanni
    Cavaliere, Giuseppe
    Fanelli, Luca
    JOURNAL OF APPLIED ECONOMETRICS, 2022, 37 (01) : 3 - 22
  • [47] INFERENCE FROM MODELS OF SOFTWARE SYSTEMS
    STAVELY, AM
    JOURNAL OF SYSTEMS AND SOFTWARE, 1985, 5 (03) : 185 - 191
  • [48] Complex humanitarian emergencies: A review of epidemiological and response models
    Burkle, F. M.
    JOURNAL OF POSTGRADUATE MEDICINE, 2006, 52 (02) : 110 - 115
  • [49] Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data
    Hay, James A.
    Routledge, Isobel
    Takahashi, Saki
    EPIDEMICS, 2024, 49
  • [50] Direct and Surrogate Likelihood-Free Statistical Inference for Epidemiological Models in a Network of Contacts
    Avila-Ayala, Rocio M.
    Leticia Ramirez-Ramirez, L.
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 457 - 469