Conductance in discrete dynamical systems

被引:1
作者
Fernandes, S. [1 ]
Gracio, C. [1 ]
Ramos, C. [1 ]
机构
[1] Univ Evora, Dept Matemat, P-7000671 Evora, Portugal
关键词
Discrete dynamical systems; Symbolic dynamics; Invariants; Conductance; EIGENVALUE; LAPLACIAN; MAPS;
D O I
10.1007/s11071-010-9660-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We will cover results related to the study of the conductance on digraphs arising from discrete dynamical systems. Several definitions of conductance are known and we present a study which gives a comparison between them in order to choose the appropriate definition to applications. The study makes a strong use of symbolic dynamics. As an application, we analyze the mechanical system of the nonlinear pendulum.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 19 条
[1]  
Almeida P., 1996, Iteration theory (Batschuns, 1992), P1
[2]  
[Anonymous], INT J PURE APPL MATH
[3]  
[Anonymous], 1991, GRAPH THEORY COMBINA
[4]   Edge-isoperimetric problems for cartesian powers of regular graphs [J].
Bezrukov, SL ;
Elsässer, R .
THEORETICAL COMPUTER SCIENCE, 2003, 307 (03) :473-492
[5]  
BOLLOBAS B, 1997, MSRI PUBL, V31
[6]   Conductance, laplacian and mixing rate in discrete dynamical systems [J].
Fernandes, S. ;
Ramos, J. Sousa .
NONLINEAR DYNAMICS, 2006, 44 (1-4) :117-126
[7]  
FERNANDES S, 2006, GRAZER MATH BER, V350, P69
[8]   Second eigenvalue of transition matrix associated to iterated maps [J].
Fernandes, Sara ;
Ramos, J. Sousa .
CHAOS SOLITONS & FRACTALS, 2007, 31 (02) :316-326
[9]   LAPLACIANS AND THE CHEEGER CONSTANTS FOR DISCRETE DYNAMICAL SYSTEMS [J].
Fernandes, Sara ;
Gracio, Clara ;
Ramos, J. Sousa .
DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, :213-223
[10]   The first eigenvalue of the Laplacian and the conductance of a compact surface [J].
Gracio, Clara ;
Ramos, J. Sousa .
NONLINEAR DYNAMICS, 2006, 44 (1-4) :243-250