miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells

被引:78
|
作者
Huang, Yuanhang [1 ,2 ]
Tong, Junrong [2 ]
He, Feng [2 ]
Yu, Xinpei [3 ]
Fan, Liming [2 ]
Hu, Jing [2 ]
Tan, Jiangping [2 ]
Chen, Zhengliang [1 ]
机构
[1] Southern Med Univ, Sch Basic Med Sci, Dept Immunol, Guangzhou 510515, Guangdong, Peoples R China
[2] Guanzhou Mil Command, Guanzhou Gen Hosp, Dept Nephrol, Guangzhou 510010, Guangdong, Peoples R China
[3] Guanzhou Mil Command, Guanzhou Gen Hosp, Geriatr Infect & Organ Funct Support Lab, Guangzhou 510010, Guangdong, Peoples R China
关键词
microRNA; miR-141; epithelial mesenchymal transition; renal tubulointerstitial fibrosis; TGF-beta; 1; FSP1; HIPK2; INTERACTING PROTEIN KINASE-2; MIR-200; FAMILY; OBSTRUCTIVE NEPHROPATHY; INTERSTITIAL FIBROSIS; PULMONARY-FIBROSIS; DOWN-REGULATION; TARGETING ZEB1; TGF-BETA; MICRORNAS; MECHANISM;
D O I
10.3892/ijmm.2014.2008
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Epithelial-mesenchymal transition (EMT) plays a critical role in embryonic development, wound healing, tissue regeneration, cancer progression and organ fibrosis. The proximal tubular epithelial cells undergo EMT, resulting in matrix-producing fibroblasts and thereby contribute to the pathogenesis of renal fibrosis. The profibrotic cytokine,TGF-beta, is now recognized as the main pathogenic driver that has been shown to induce EMT in tubular epithelial cells. Increasing evidence indicate that HIPK2 dysfunction may play a role in fibroblasts behavior, and therefore, HIPK2 may be considered as a novel potential target for anti-fibrosis therapy. Recently, members of the miR-200 family (miR-200a, b and c and miR-141) have been shown to inhibit EMT. However, the steps of the multifactorial renal fibrosis progression that these miRNAs regulate, particularly miR-141, are unclear. To study the functional importance of miR-141 in EMT, a well-established in vitro EMT assay was used to demonstrate renal tubulointerstitial fibrosis; transforming growth factor-beta 1-induced EMT in HK-2 cells. Overexpression of miR-141 in HK-2 cells, either with or without TGF-beta 1 treatment, hindered EMT by enhancing E-cadherin and decreasing vimentin and fibroblast-specific protein 1 expression. miR-141 expression was repressed during EMT in a dose- and time-dependent manner through upregulation of HIPK2 expression. Ectopic expression of HIPK2 promoted, EMT by decreasing E-cadherin. Furthermore, co-transfection of miR-141 with the HIPK2 ORF clone partially inhibited EMT by restoring E-cadherin expression. miR-141 downregulated the expression of HIPK2 via direct interaction with the 3'-untranslated region of HIPK2. Taken together, these findings aid in the understanding of the role and mechanism of miR-141 in regulating renal fibrosis via the TGF-beta 1/miR-141/HIPK2/EMT axis, and miR-141 may represent novel biomarkers and therapeutic targets in the treatment of renal fibrosis.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 50 条
  • [21] miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells
    Chen, Y.
    Xiao, Y.
    Ge, W.
    Zhou, K.
    Wen, J.
    Yan, W.
    Wang, Y.
    Wang, B.
    Qu, C.
    Wu, J.
    Xu, L.
    Cai, W.
    CELL DEATH & DISEASE, 2013, 4 : e541 - e541
  • [22] miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells
    Y Chen
    Y Xiao
    W Ge
    K Zhou
    J Wen
    W Yan
    Y Wang
    B Wang
    C Qu
    J Wu
    L Xu
    W Cai
    Cell Death & Disease, 2013, 4 : e541 - e541
  • [23] IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells
    Zhaoxing Dong
    Wenlin Tai
    Wen Lei
    Yin Wang
    ZhenKun Li
    Tao Zhang
    BMC Cell Biology, 17
  • [24] Fibronectin fibrils regulate TGF-β1-induced Epithelial-Mesenchymal Transition
    Griggs, Lauren A.
    Hassan, Nadiah T.
    Malik, Roshni S.
    Griffin, Brian P.
    Martinez, Brittany A.
    Elmore, Lynne W.
    Lemmon, Christopher A.
    MATRIX BIOLOGY, 2017, 60-61 : 157 - 175
  • [25] Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition
    Leight, Jennifer L.
    Wozniak, Michele A.
    Chen, Sophia
    Lynch, Michelle L.
    Chen, Christopher S.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23 (05) : 781 - 791
  • [26] TGFβ1-induced expression of caldesmon mediates epithelial-mesenchymal transition
    Nalluri, Sandeep M.
    O'Connor, Joseph W.
    Virgi, Gage A.
    Stewart, Samantha E.
    Ye, Dan
    Gomez, Esther W.
    CYTOSKELETON, 2018, 75 (05) : 201 - 212
  • [27] EED regulates epithelial-mesenchymal transition of cancer cells induced by TGF-β
    Oktyabri, Dulamsuren
    Tange, Shoichiro
    Terashima, Minoru
    Ishimura, Akihiko
    Suzuki, Takeshi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 453 (01) : 124 - 130
  • [28] MKP2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells through a JNK-dependent pathway
    Li, Zhenzhen
    Liu, Xianghua
    Tian, Fengyan
    Li, Ji
    Wang, Qingwei
    Gu, Chaohui
    CLINICAL SCIENCE, 2018, 132 (21) : 2339 - 2355
  • [29] DNMTs Are Involved in TGF-β1-Induced Epithelial-Mesenchymal Transitions in Airway Epithelial Cells
    Park, Joo-Hoo
    Shin, Jae-Min
    Yang, Hyun-Woo
    Park, Il-Ho
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)