On the rigidity of small domains

被引:21
作者
Crachiola, A [1 ]
Makar-Limanov, L
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
关键词
AK invariant; cancellation problem; locally nilpotent derivation; locally finite iterative higher derivation;
D O I
10.1016/j.jalgebra.2004.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of arbitrary characteristic. Let A be an affine domain over k with transcendence degree 1 which is not isomorphic to k[x], and let B be a domain over k. We show that the AK invariant distributes over the tensor product of A by B. As a consequence, we obtain a generalization of the cancellation theorem of S. Abhyankar, P. Eakin, and W. Heinzer. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 20 条
[1]   UNIQUENESS OF COEFFICIENT RING IN A POLYNOMIAL RING [J].
ABHYANKAR, SS ;
HEINZER, W ;
EAKIN, P .
JOURNAL OF ALGEBRA, 1972, 23 (02) :310-+
[2]  
[Anonymous], 1986, CAMBRIDGE STUD ADV M
[3]  
ASANUMA T, 2002, MEM FAC ED TOYAMA U, V56, P43
[4]   Affine surfaces with AK(S) = C [J].
Bandman, T ;
Makar-Limanov, L .
MICHIGAN MATHEMATICAL JOURNAL, 2001, 49 (03) :567-582
[5]  
DANIELEWSKI W, 1989, CANCELLATON PROBLEM
[6]   ON COMPLEX AFFINE SURFACES WITH C+-ACTION [J].
FIESELER, KH .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (01) :5-27
[7]   ZARISKI PROBLEM [J].
FUJITA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1979, 55 (03) :106-110
[8]  
FUJITA T, 1977, J FS U TOKYO IA, V24, P123
[9]  
Hartshorne R, 1977, GRAD TEXTS MATH, V52
[10]  
HOCHSTER M, 1972, P AM MATH SOC, V34, P81