Additively manufactured graphitic electrochemical sensing platforms

被引:85
作者
Foster, Christopher W. [1 ]
Elbardisy, Hadil M. [1 ,2 ]
Down, Michael P. [1 ]
Keefe, Edmund M. [1 ]
Smith, Graham C. [3 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, Chester St, Manchester M15 GD, Lancs, England
[2] Damanhour Univ, Dept Pharmaceut Anal, Fac Pharm, Damanhour 22511, Egypt
[3] Univ Chester, Dept Nat Sci, Fac Sci & Engn, Thornton Sci Pk,Pool Lane, Chester CH2 4NU, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
Additive manufacturing (AM); 3D printing; AM sensors; Electroanalytical sensors; 3D sensors; CYCLIC VOLTAMMETRY; PRINTED ELECTRODES; ENHANCE;
D O I
10.1016/j.cej.2019.122343
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Additive manufacturing (AM)/3D printing technology provides a novel platform for the rapid prototyping of low cost 3D platforms. Herein, we report for the first time, the fabrication, characterisation (physicochemical and electrochemical) and application (electrochemical sensing) of bespoke nanographite (NG)-loaded (25 wt%) AM printable (via fused deposition modelling) NG/PLA filaments. We have optimised and tailored a variety of NG-loaded filaments and their AM counterparts in order to achieve optimal printability and electrochemical behaviour. Two AM platforms, namely AM macroelectrodes (AMEs) and AM 3D honeycomb (macroporous) structures are benchmarked against a range of redox probes and the simultaneous detection of lead (II) and cadmium (II). This proof-of-concept demonstrates the impact that AM can have within the area of electroanalytical sensors.
引用
收藏
页数:5
相关论文
共 20 条
[1]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[2]  
[Anonymous], NEW J CHEM
[3]   The transport limited currents at insonated electrodes [J].
Banks, CE ;
Compton, RG ;
Fisher, AC ;
Henley, LE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (12) :3147-3152
[4]   Can solvent induced surface modifications applied to screen- printed platforms enhance their electroanalytical performance? [J].
Blanco, Elias ;
Banks, Craig E. ;
Foster, Christopher W. ;
Cumba, Loanda R. ;
do Carmo, Devaney R. ;
Banks, Craig E. .
ANALYST, 2016, 141 (09) :2783-2790
[5]   Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification [J].
Chen, PH ;
McCreery, RL .
ANALYTICAL CHEMISTRY, 1996, 68 (22) :3958-3965
[6]   Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response? [J].
Cumba, Loanda R. ;
Foster, Christopher W. ;
Brownson, Dale A. C. ;
Smith, Jamie P. ;
Iniesta, Jesus ;
Thakur, Bhawana ;
do Carmo, Devaney R. ;
Banks, Craig E. .
ANALYST, 2016, 141 (09) :2791-2799
[7]   Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets [J].
dos Santos, Pamyla L. ;
Katic, Vera ;
Loureiro, Hugo C. ;
dos Santos, Matheus F. ;
dos Santos, Diego P. ;
Formiga, Andre L. B. ;
Bonacin, Juliano A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 281 :837-848
[8]   Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms [J].
Ferrari, Alejandro Garcia-Miranda ;
Foster, Christopher W. ;
Kelly, Peter J. ;
Brownson, Dale A. C. ;
Banks, Craig E. .
BIOSENSORS-BASEL, 2018, 8 (02)
[9]   3D Printed Graphene Based Energy Storage Devices [J].
Foster, Christopher W. ;
Down, Michael P. ;
Zhang, Yan ;
Ji, Xiaobo ;
Rowley-Neale, Samuel J. ;
Smith, Graham C. ;
Kelly, Peter J. ;
Banks, Craig E. .
SCIENTIFIC REPORTS, 2017, 7
[10]   Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes [J].
Foster, Christopher W. ;
de Souza, Ana P. ;
Metters, Jonathan P. ;
Bertotti, Mauro ;
Banks, Craig E. .
ANALYST, 2015, 140 (22) :7598-7612