Fixed point theorems for cyclic mappings in quasi-partial b-metric spaces

被引:3
作者
Fan, Xiaoming [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 05期
基金
中国博士后科学基金; 黑龙江省自然科学基金;
关键词
Quasi-partial b-metric space; fixed point theorems; qp(b)-cyclic-Banach contraction mapping; qpb-cyclic-Kannan mapping; qp(b)-cyclic beta-quasi-contraction mapping;
D O I
10.22436/jnsa.009.05.22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concepts of qp(b)-cyclic-Banach contraction mapping, qpb-cyclic-Kannan mapping and qp(b)-cyclic beta-quasi-contraction mapping and establish the existence and uniqueness of fixed point theorems for these mappings in quasi-partial b-metric spaces. Some examples are presented to validate our results. (C) 2016 All rights reserved.
引用
收藏
页码:2175 / 2189
页数:15
相关论文
共 19 条
[1]  
Amini-Harandi A., 2012, FIXED POINT THEORY A, V2012
[2]  
BANACH S., 1922, Fundam. Math., V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[3]  
Bukatin MA, 1998, LECT NOTES COMPUT SC, V1378, P125, DOI 10.1007/BFb0053546
[4]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[5]  
Czerwik S., 1993, Acta Math. Univ. Ostrav., V1, P5
[6]   Quasi-partial b-metric spaces and some related fixed point theorems [J].
Gupta, Anuradha ;
Gautam, Pragati .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[7]  
Hitzler P., 2000, J. Electr. Eng, V51, P3
[8]   Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications [J].
Hussain, Nawab ;
Roshan, Jamal Rezaei ;
Parvaneh, Vahid ;
Abbas, Mujahid .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[9]   SOME RESULTS ON FIXED POINTS .2. [J].
KANNAN, R .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (04) :405-&
[10]   Fixed point theorems on quasi-partial metric spaces [J].
Karapinar, Erdal ;
Erhan, I. M. ;
Ozturk, Ali .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) :2442-2448