Yb-Doped 3D Ordered Porous SnO2 With a Controllable Pore Size for ppb Level Formaldehyde Detection

被引:5
作者
Sun, Dan [1 ]
Tang, Xiaonian [1 ]
Li, Shuo [1 ]
Liu, Li [1 ]
机构
[1] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
关键词
3D ordered porous structure; controllable pore size; Yb-doped SnO2; formaldehyde; GAS-SENSING PERFORMANCE; HOLLOW NANOFIBERS; METAL-OXIDES; NO2; NANOPARTICLES; SURFACE; SPHERES; SENSOR; NH3; H-2;
D O I
10.1109/JSEN.2021.3082615
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The pure and Yb-doped 3D ordered porous SnO2 with a controllable pore diameter (around 50 nm, 800 nm, and 1200 nm) were prepared by a simple template method. 3 at% Yb-doped 51.3 nm ordered porous SnO2 (51.3 nm SnO2/3%Yb) showed the largest specific surface area (70.08 m(2)/g) and the biggest oxygen vacancy in nitrogen adsorption-desorption and XPS analysis. The response of 51.3 nm SnO2/3%Yb is 95 against 50 ppm HCHO at 108 degrees C, which is 3.7 times higher than 1228.0 nm SnO2/3%Yb (27), 2.1 times higher than 806.0 nm SnO2/3%Yb (45), and 2.4 times higher pure 57.3 nm SnO2(40). However, the response of pure 57.3 nm SnO2 (40) is only 2.9 times higher than pure 1231.0 nm SnO2(13.5), and 1.2 times higher than pure 832.1.0 nm SnO2 (30). Especially, the detectable formaldehyde (HCHO) of 51.3 nm SnO2/3%Yb minimum limit has been reduced to 50 ppb and the relevant response is 3.5. Besides, 51.3 nm SnO2/3%Yb also exhibited high linearity (50 ppb-200 ppm), the fast response time (2 s) and excellent selectivity toward HCHO. Above all, for the same kinds of SnO2 nanomaterials, the smaller pore size is, the stronger sensitivity it will be, and under the effect of Yb doping, the gas sensitivity is enhanced more significantly with the decrease of the pore size. Besides, for the same kinds of SnO2 nanomaterials that have the same pore size, the gas-sensitive property is also significantly enhanced due to the doping of Yb.
引用
收藏
页码:18271 / 18278
页数:8
相关论文
共 30 条
[1]   Adjustable polystyrene nanoparticle templates for the production of mesoporous foams and ZnO inverse opals [J].
Abitaev, Karina ;
Qawasmi, Yaseen ;
Atanasova, Petia ;
Dargel, Carina ;
Bill, Joachim ;
Hellweg, Thomas ;
Sottmann, Thomas .
COLLOID AND POLYMER SCIENCE, 2021, 299 (02) :243-258
[2]   Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube:: A density functional theory study [J].
An, Wei ;
Wu, Xiaojun ;
Zeng, X. C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :5747-5755
[3]   Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor [J].
Chen, Er-Xia ;
Yang, Hui ;
Zhang, Jian .
INORGANIC CHEMISTRY, 2014, 53 (11) :5411-5413
[4]   Improved ethanediol sensing with single Yb ions doped SnO2 nanobelt [J].
Chen, Weiwu ;
Liu, Yingkai ;
Qin, Zhaojun ;
Wu, Yuemei ;
Li, Shuanghui ;
Gong, Nailiang .
CERAMICS INTERNATIONAL, 2016, 42 (09) :10902-10907
[5]   Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance [J].
Do Dang Trung ;
Nguyen Duc Hoa ;
Pham Van Tong ;
Nguyen Van Duy ;
Dao, T. D. ;
Chung, H. V. ;
Nagao, T. ;
Nguyen Van Hieu .
JOURNAL OF HAZARDOUS MATERIALS, 2014, 265 :124-132
[6]   High response and selectivity of platinum modified tin oxide porous spheres for nitrogen dioxide gas sensing at low temperature [J].
Du, Wenjing ;
Wu, Nannan ;
Wang, Zhou ;
Liu, Jiurong ;
Xu, Dongmei ;
Liu, Wei .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 257 :427-435
[7]   Preparation, characterization and gas sensing properties of Pr-doped ZnO/SnO2 nanoflowers [J].
Ge, Q. ;
Ma, S. Y. ;
Xu, Y. B. ;
Xu, X. L. ;
Chen, H. ;
Qiang, Z. ;
Yang, H. M. ;
Ma, L. ;
Zeng, Q. Z. .
MATERIALS LETTERS, 2017, 191 :5-9
[8]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/NCHEM.2695, 10.1038/nchem.2695]
[9]   Metal oxides for solid-state gas sensors: What determines our choice? [J].
Korotcenkov, G. .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 139 (01) :1-23
[10]   Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties [J].
Li, W. Q. ;
Ma, S. Y. ;
Li, Y. F. ;
Li, X. B. ;
Wang, C. Y. ;
Yang, X. H. ;
Cheng, L. ;
Mao, Y. Z. ;
Luo, J. ;
Gengzang, D. J. ;
Wan, G. X. ;
Xu, X. L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 605 :80-88