Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation

被引:91
作者
Takagi, H
Maeda, R
Hosoda, N
Suga, T
机构
[1] MITI, AIST, Mech Engn Lab, Meguro Ku, Ibaraki, Osaka 3058564, Japan
[2] Univ Tokyo, Adv Sci & Technol Res Ctr, Tokyo 1538904, Japan
关键词
D O I
10.1063/1.123860
中图分类号
O59 [应用物理学];
学科分类号
摘要
The residual stress originating form the thermal expansion mismatch has been a serious problem in the bonding of piezoelectric crystals onto silicon wafers. The room-temperature bonding method using argon-beam surface activation is applied to the bonding of lithium niobate and silicon. In this method, the surfaces of the specimens are etched by fast argon atom beam and bonded to each other in vacuum. Bonding strength equivalent to that of the bulk material is achieved without any heat treatment. Transmission electron microscope observations show intimate contact at the interface. This method is quite suitable for bonding dissimilar materials with thermal expansion mismatch, because the bonding is performed at room temperature throughout the whole process and no thermal stress is generated. (C) 1999 American Institute of Physics. [S0003-6951(99)01216-4].
引用
收藏
页码:2387 / 2389
页数:3
相关论文
共 22 条
[1]   FABRICATION AND BONDING STRENGTH OF BONDED SILICON-QUARTZ WAFERS [J].
ABE, T ;
SUNAGAWA, K ;
UCHIYAMA, A ;
YOSHIZAWA, K ;
NAKAZATO, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (1B) :334-337
[2]   Ferroelectric-semiconductor heterostructures obtained by direct wafer bonding [J].
Alexe, M ;
Kastner, G ;
Hesse, D ;
Gosele, U .
APPLIED PHYSICS LETTERS, 1997, 70 (25) :3416-3418
[3]   1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature [J].
Chung, TR ;
Hosoda, N ;
Suga, T ;
Takagi, H .
APPLIED PHYSICS LETTERS, 1998, 72 (13) :1565-1566
[4]   DIRECT BONDING OF QUARTZ-CRYSTAL ONTO SILICON [J].
EDA, K ;
KANABOSHI, A ;
OGURA, T ;
TAGUCHI, Y .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (07) :4801-4802
[5]  
Feng T., 1995, Proceedings of the Third International Symposium on Semiconductor Wafer Bonding: Physics and Applications, P597
[6]   APPLICATIONS OF THE SILICON-WAFER DIRECT-BONDING TECHNIQUE TO ELECTRON DEVICES [J].
FURUKAWA, K ;
NAKAGAWA, A .
APPLIED SURFACE SCIENCE, 1989, 41-2 :627-632
[7]   DIVERSITY AND FEASIBILITY OF DIRECT BONDING - A SURVEY OF A DEDICATED OPTICAL-TECHNOLOGY [J].
HAISMA, J ;
SPIERINGS, BACM ;
BIERMANN, UKP ;
VANGORKUM, AA .
APPLIED OPTICS, 1994, 33 (07) :1154-1169
[8]   THERMAL EXPANSION OF LITHIUM TANTALATE AND LITHIUM NIOBATE SINGLE CRYSTALS [J].
KIM, YS ;
SMITH, RT .
JOURNAL OF APPLIED PHYSICS, 1969, 40 (11) :4637-&
[9]   High bond energy and thermomechanical stress in silicon on sapphire wafer bonding [J].
Kopperschmidt, P ;
Kastner, G ;
Hesse, D ;
Zakharov, ND ;
Gosele, U .
APPLIED PHYSICS LETTERS, 1997, 70 (22) :2972-2974
[10]   WAFER BONDING FOR SILICON-ON-INSULATOR TECHNOLOGIES [J].
LASKY, JB .
APPLIED PHYSICS LETTERS, 1986, 48 (01) :78-80