A posteriori discontinuous Galerkin error estimation on tetrahedral meshes

被引:1
|
作者
Adjerid, Slimane [1 ]
Mechai, Idir [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin method; Hyperbolic problems; A posteriori error estimation; Tetrahedral meshes; FINITE-ELEMENT-METHOD; 2-DIMENSIONAL HYPERBOLIC PROBLEMS; CONSERVATION-LAWS; SUPERCONVERGENCE; PARALLEL;
D O I
10.1016/j.cma.2011.09.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript we present a simple and efficient a posteriori error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic problems on structured and unstructured tetrahedral meshes. We present a local error analysis to derive a discontinuous Galerkin orthogonality condition for the leading term of the discretization error and find basis functions spanning the error. We describe an implicit error estimation procedure for the leading term of the discretization error by solving a local problem on each tetrahedron. Numerical computations show that the implicit a posteriori error estimation procedure yields accurate estimates for linear and nonlinear problems with smooth solutions. Furthermore, we show the performance of our error estimates on problems with discontinuous solutions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 178
页数:22
相关论文
共 50 条