Recent developments of the reconstruction in magnetic particle imaging

被引:45
作者
Yin, Lin [1 ,2 ,3 ]
Li, Wei [4 ]
Du, Yang [1 ,2 ,3 ]
Wang, Kun [1 ,2 ,3 ]
Liu, Zhenyu [1 ,2 ,3 ]
Hui, Hui [1 ,2 ,3 ]
Tian, Jie [1 ,2 ,3 ,5 ]
机构
[1] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Jinan Univ, Affiliated Hosp 1, Med Imaging Ctr, Guangzhou 510632, Guangdong, Peoples R China
[5] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic particle imaging; Image reconstruction; System matrix; X-space; NANOPARTICLES; FORMULATION; RELAXATION;
D O I
10.1186/s42492-022-00120-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic particle imaging (MPI) is an emerging molecular imaging technique with high sensitivity and temporal-spatial resolution. Image reconstruction is an important research topic in MPI, which converts an induced voltage signal into the image of superparamagnetic iron oxide particles concentration distribution. MPI reconstruction primarily involves system matrix- and x-space-based methods. In this review, we provide a detailed overview of the research status and future research trends of these two methods. In addition, we review the application of deep learning methods in MPI reconstruction and the current open sources of MPI. Finally, research opinions on MPI reconstruction are presented. We hope this review promotes the use of MPI in clinical applications.
引用
收藏
页数:13
相关论文
共 73 条
[1]  
Albers H., 2021, J. Magn. Magn. Mater.
[2]  
Baltruschat Ivo M., 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12262), P74, DOI 10.1007/978-3-030-59713-9_8
[3]   Electronic Field Free Line Rotation and Relaxation Deconvolution in Magnetic Particle Imaging [J].
Bente, Klaas ;
Weber, Matthias ;
Graeser, Matthias ;
Sattel, Timo F. ;
Erbe, Marlitt ;
Buzug, Thorsten M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (02) :644-651
[4]   Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications [J].
Bulte, Jeff W. M. .
ADVANCED DRUG DELIVERY REVIEWS, 2019, 138 :293-301
[5]   Neural Network Image Reconstruction for Magnetic Particle Imaging [J].
Chae, Byung Gyu .
ETRI JOURNAL, 2017, 39 (06) :841-850
[6]   The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix [J].
Chen, Xiaojun ;
Jiang, Zhenqi ;
Han, Xiao ;
Wang, Xiaolin ;
Tang, Xiaoying .
DIAGNOSTICS, 2021, 11 (05)
[7]   Relaxation in X-Space Magnetic Particle Imaging [J].
Croft, Laura R. ;
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (12) :2335-2342
[8]   Dependence of the Magnetization Response on the Driving Field Amplitude for Magnetic Particle Imaging and Spectroscopy [J].
Deissler, Robert J. ;
Martens, Michael A. .
IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (02) :6500904
[9]   Dependence of Brownian and Neel relaxation times on magnetic field strength [J].
Deissler, Robert J. ;
Wu, Yong ;
Martens, Michael A. .
MEDICAL PHYSICS, 2014, 41 (01)
[10]  
Dittmer S., 2020, PREPRINT