4 V Aqueous hybrid supercapacitors based on dual electrolyte technologies

被引:6
作者
Makino, Sho [1 ]
Mochizuki, Dai [1 ,2 ]
Sugimoto, Wataru [1 ,2 ]
机构
[1] Shinshu Univ, Fac Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan
[2] Shinshu Univ, Ctr Energy & Environm Sci, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan
基金
日本科学技术振兴机构;
关键词
ELECTROCHEMICAL CAPACITORS; ENERGY-STORAGE; RUTHENIUM OXIDE; NANOSHEETS; BATTERY; ANODE; PERFORMANCE; CATHODE; METAL;
D O I
10.1016/j.coelec.2017.10.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous hybrid supercapacitors have the advantage of utilizing high pseudo-capacitive electrodes, but suffer from low cell voltage due to the narrow voltage window of water decomposition. This disadvantage can be overcome by combining aqueous electrochemical capacitor technologies with a water-stable anode that is protected with a solid electrolyte. In this short review, we summarize recent advances in hybrid supercapacitors with a rated voltage of similar to 4 V using an aqueous catholyte and pseudo-capacitive cathode combined with a protected Li or Li-pre-doped carbon anode. Record high specific energy of >700 Wh (kg-cathode)(-1) were obtained with a pseudo-capacitive positive electrode and a protected Li-pre-doped carbon anode. The newly developed hybrid supercapacitor outperforms present Li-ion capacitor technology and even has the potential to compete with rechargeable batteries.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 25 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]  
Brousse T, 2017, SPRINGER HANDBOOK OF ELECTROCHEMICAL ENERGY, P495
[3]   A lithium ion battery using an aqueous electrolyte solution [J].
Chang, Zheng ;
Li, Chunyang ;
Wang, Yanfang ;
Chen, Bingwei ;
Fu, Lijun ;
Zhu, Yusong ;
Zhang, Lixin ;
Wu, Yuping ;
Huang, Wei .
SCIENTIFIC REPORTS, 2016, 6
[4]   A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode [J].
Chou, Shu-Lei ;
Wang, Yun-Xiao ;
Xu, Jiantie ;
Wang, Jia-Zhao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 :35-38
[5]   Around the thermodynamic limitations of supercapacitors operating in aqueous electrolytes [J].
Fic, Krzysztof ;
Meller, Mikolaj ;
Menzel, Jakub ;
Frackowiak, Elzbieta .
ELECTROCHIMICA ACTA, 2016, 206 :496-503
[6]   Synthesis of Nanosheet Crystallites of Ruthenate with an α-NaFeO2-Related Structure and Its Electrochemical Supercapacitor Property [J].
Fukuda, Katsutoshi ;
Saida, Takahiro ;
Sato, Jun ;
Yonezawa, Mihoko ;
Takasu, Yoshio ;
Sugimoto, Wataru .
INORGANIC CHEMISTRY, 2010, 49 (10) :4391-4393
[7]   Asymmetric electrochemical capacitors-Stretching the limits of aqueous electrolytes [J].
Long, Jeffrey W. ;
Belanger, Daniel ;
Brousse, Thierry ;
Sugimoto, Wataru ;
Sassin, Megan B. ;
Crosnier, Olivier .
MRS BULLETIN, 2011, 36 (07) :513-522
[8]   Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode [J].
Makino, Sho ;
Yamamoto, Rie ;
Sugimoto, Shigeyuki ;
Sugimoto, Wataru .
JOURNAL OF POWER SOURCES, 2016, 326 :711-716
[9]   Towards Implantable Bio-Supercapacitors: Pseudocapacitance of Ruthenium Oxide Nanoparticles and Nanosheets in Acids, Buffered Solutions, and Bioelectrolytes [J].
Makino, Sho ;
Ban, Takayuki ;
Sugimoto, Wataru .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5001-A5006
[10]   Electrochemical Capacitor Behavior of RuO2 Nanosheets in Buffered Solution and Its Application to Hybrid Capacitor [J].
Makino, Sho ;
Ban, Takayuki ;
Sugimoto, Wataru .
ELECTROCHEMISTRY, 2013, 81 (10) :795-797