Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum

被引:377
作者
Wang, Bo [1 ,2 ]
Liu, Wenzhe [1 ,2 ]
Zhao, Maoxiong [1 ,2 ]
Wang, Jiajun [1 ,2 ]
Zhang, Yiwen [1 ,2 ]
Chen, Ang [1 ,2 ]
Guan, Fang [1 ,2 ]
Liu, Xiaohan [1 ,2 ,3 ]
Shi, Lei [1 ,2 ,3 ]
Zi, Jian [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Minist Educ, Key Lab Micro & Nanophoton Struct, State Key Lab Surface Phys, Shanghai, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan, Peoples R China
基金
美国国家科学基金会;
关键词
ORBITAL ANGULAR-MOMENTUM; PHASE; LIGHT;
D O I
10.1038/s41566-020-0658-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical vortices, beams with spiral wavefronts and screw phase dislocations, have been attracting increasing interest in various fields. Here, we theoretically propose and experimentally realize an easy approach to generating optical vortices. We leverage the inherent momentum-space topological vortex-like response of polarization (strong polarization anisotropy) around bound states in the continuum of two-dimensional periodic structures, for example photonic crystal slabs, to induce Pancharatnam-Berry phases and spin-orbit interaction in the beams. This new class of optical vortex generators operates in momentum space, meaning that the structure is almost homogeneous without a real-space centre. In principle, any even-order optical vortex that is a diffraction-resistant high-order quasi-Bessel beam can be achieved at any desired working wavelength. The proposed approach expands the application of bound states in the continuum and topological photonics. Optical vortices can be generated by applying the winding behaviour of resonances in the momentum space of a photonic crystal slab, which naturally exists and is associated with bound states in the continuum, to modify the phase front of a beam.
引用
收藏
页码:623 / +
页数:7
相关论文
共 52 条
[21]   A revolution in optical manipulation [J].
Grier, DG .
NATURE, 2003, 424 (6950) :810-816
[22]   Topologically Protected Complete Polarization Conversion [J].
Guo, Yu ;
Xiao, Meng ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2017, 119 (16)
[23]   Directional lasing in resonant semiconductor nanoantenna arrays [J].
Ha, Son Tung ;
Fu, Yuan Hsing ;
Emani, Naresh Kumar ;
Pan, Zhenying ;
Bakker, Reuben M. ;
Paniagua-Dominguez, Ramon ;
Kuznetsov, Arseniy, I .
NATURE NANOTECHNOLOGY, 2018, 13 (11) :1042-+
[24]   Space-variant polarization manipulation [J].
Hasman, E ;
Biener, G ;
Niv, A ;
Kleiner, V .
PROGRESS IN OPTICS, VOL 47, 2005, 47 :215-289
[25]   Observation of trapped light within the radiation continuum [J].
Hsu, Chia Wei ;
Zhen, Bo ;
Lee, Jeongwon ;
Chua, Song-Liang ;
Johnson, Steven G. ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE, 2013, 499 (7457) :188-191
[26]   Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity [J].
Huang, Lingling ;
Chen, Xianzhong ;
Bai, Benfeng ;
Tan, Qiaofeng ;
Jin, Guofan ;
Zentgraf, Thomas ;
Zhang, Shuang .
LIGHT-SCIENCE & APPLICATIONS, 2013, 2 :e70-e70
[27]   Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering [J].
Jin, Jicheng ;
Yin, Xuefan ;
Ni, Liangfu ;
Soljacic, Marin ;
Zhen, Bo ;
Peng, Chao .
NATURE, 2019, 574 (7779) :501-+
[28]   Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J].
Karimi, Ebrahim ;
Schulz, Sebastian A. ;
De Leon, Israel ;
Qassim, Hammam ;
Upham, Jeremy ;
Boyd, Robert W. .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e167-e167
[29]   Planar Photonics with Metasurfaces [J].
Kildishev, Alexander V. ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
SCIENCE, 2013, 339 (6125) :12320091-12320096
[30]   Lasing action from photonic bound states in continuum [J].
Kodigala, Ashok ;
Lepetit, Thomas ;
Gu, Qing ;
Bahari, Babak ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
NATURE, 2017, 541 (7636) :196-199