Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum

被引:377
作者
Wang, Bo [1 ,2 ]
Liu, Wenzhe [1 ,2 ]
Zhao, Maoxiong [1 ,2 ]
Wang, Jiajun [1 ,2 ]
Zhang, Yiwen [1 ,2 ]
Chen, Ang [1 ,2 ]
Guan, Fang [1 ,2 ]
Liu, Xiaohan [1 ,2 ,3 ]
Shi, Lei [1 ,2 ,3 ]
Zi, Jian [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Minist Educ, Key Lab Micro & Nanophoton Struct, State Key Lab Surface Phys, Shanghai, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan, Peoples R China
基金
美国国家科学基金会;
关键词
ORBITAL ANGULAR-MOMENTUM; PHASE; LIGHT;
D O I
10.1038/s41566-020-0658-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical vortices, beams with spiral wavefronts and screw phase dislocations, have been attracting increasing interest in various fields. Here, we theoretically propose and experimentally realize an easy approach to generating optical vortices. We leverage the inherent momentum-space topological vortex-like response of polarization (strong polarization anisotropy) around bound states in the continuum of two-dimensional periodic structures, for example photonic crystal slabs, to induce Pancharatnam-Berry phases and spin-orbit interaction in the beams. This new class of optical vortex generators operates in momentum space, meaning that the structure is almost homogeneous without a real-space centre. In principle, any even-order optical vortex that is a diffraction-resistant high-order quasi-Bessel beam can be achieved at any desired working wavelength. The proposed approach expands the application of bound states in the continuum and topological photonics. Optical vortices can be generated by applying the winding behaviour of resonances in the momentum space of a photonic crystal slab, which naturally exists and is associated with bound states in the continuum, to modify the phase front of a beam.
引用
收藏
页码:623 / +
页数:7
相关论文
共 52 条
[1]   Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light [J].
Adachi, Hiroto ;
Akahoshi, Shin ;
Miyakawa, Kenji .
PHYSICAL REVIEW A, 2007, 75 (06)
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]  
Bahari B., 2017, PREPRINT
[4]   Experimental circular phased array for generating OAM radio beams [J].
Bai, Q. ;
Tennant, A. ;
Allen, B. .
ELECTRONICS LETTERS, 2014, 50 (20) :1414-+
[5]   HELICAL-WAVE-FRONT LASER-BEAMS PRODUCED WITH A SPIRAL PHASEPLATE [J].
BEIJERSBERGEN, MW ;
COERWINKEL, RPC ;
KRISTENSEN, M ;
WOERDMAN, JP .
OPTICS COMMUNICATIONS, 1994, 112 (5-6) :321-327
[6]   THE ADIABATIC PHASE AND PANCHARATNAM PHASE FOR POLARIZED-LIGHT [J].
BERRY, MV .
JOURNAL OF MODERN OPTICS, 1987, 34 (11) :1401-1407
[7]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[8]   Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems [J].
Bliokh, Konstantin Y. ;
Ostrovskaya, Elena A. ;
Alonso, Miguel A. ;
Rodriguez-Herrera, Oscar G. ;
Lara, David ;
Dainty, Chris .
OPTICS EXPRESS, 2011, 19 (27) :26132-26149
[9]   Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect [J].
Bliokh, Konstantin Yu. .
PHYSICAL REVIEW LETTERS, 2006, 97 (04)
[10]   Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings [J].
Bomzon, Z ;
Biener, G ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2002, 27 (13) :1141-1143