Integrated silicon carbide electro-optic modulator

被引:83
作者
Powell, Keith [1 ,2 ]
Li, Liwei [1 ]
Shams-Ansari, Amirhassan [2 ]
Wang, Jianfu [1 ]
Meng, Debin [1 ]
Sinclair, Neil [2 ,3 ,4 ]
Deng, Jiangdong [5 ]
Loncar, Marko [2 ]
Yi, Xiaoke [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[4] CALTECH, Alliance Quantum Technol AQT, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[5] Harvard Univ, Ctr Nanoscale Syst, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会;
关键词
COEFFICIENTS;
D O I
10.1038/s41467-022-29448-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electro-optic modulator is used to encode electrical signals onto light. Here the authors demonstrate an electro-optic modulator, based on Silicon Carbide, which can be useful for quantum and optical communications. Owing to its attractive optical and electronic properties, silicon carbide is an emerging platform for integrated photonics. However an integral component of the platform is missing-an electro-optic modulator, a device which encodes electrical signals onto light. As a non-centrosymmetric crystal, silicon carbide exhibits the Pockels effect, yet a modulator has not been realized since the discovery of this effect more than three decades ago. Here we design, fabricate, and demonstrate a Pockels modulator in silicon carbide. Specifically, we realize a waveguide-integrated, small form-factor, gigahertz-bandwidth modulator that operates using complementary metal-oxide-semiconductor (CMOS)-level voltages on a thin film of silicon carbide on insulator. Our device is fabricated using a CMOS foundry compatible fabrication process and features no signal degradation, no presence of photorefractive effects, and stable operation at high optical intensities (913 kW/mm(2)), allowing for high optical signal-to-noise ratios for modern communications. Our work unites Pockels electro-optics with a CMOS foundry compatible platform in silicon carbide.
引用
收藏
页数:7
相关论文
共 43 条
  • [21] Photorefractive tuning of whispering gallery modes of a spherical resonator integrated inside a microstructured optical fibre
    Kosma, K.
    Konidakis, I.
    Pissadakis, S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (10) : 2035 - 2040
  • [22] Electromechanical Computing at 500°C with Silicon Carbide
    Lee, Te-Hao
    Bhunia, Swarup
    Mehregany, Mehran
    [J]. SCIENCE, 2010, 329 (5997) : 1316 - 1318
  • [23] Strong Pockels materials
    Li, Mo
    Tang, Hong X.
    [J]. NATURE MATERIALS, 2019, 18 (01) : 9 - 11
  • [24] Athermal lithium niobate microresonator
    Ling, Jingwei
    He, Yang
    Luo, Rui
    Li, Mingxiao
    Liang, Hanxiao
    Lin, Qiang
    [J]. OPTICS EXPRESS, 2020, 28 (15) : 21682 - 21691
  • [25] LOW-LOSS SILICON-CARBIDE OPTICAL WAVE-GUIDES FOR SILICON-BASED OPTOELECTRONIC DEVICES
    LIU, YM
    PRUCNAL, PR
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1993, 5 (06) : 704 - 707
  • [26] High Q silicon carbide microdisk resonator
    Lu, Xiyuan
    Lee, Jonathan Y.
    Feng, Philip X. -L.
    Lin, Qiang
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (18)
  • [27] Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects
    Lukin, Daniil M.
    Guidry, Melissa A.
    Vuckovic, Jelena
    [J]. PRX QUANTUM, 2020, 1 (02):
  • [28] 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics
    Lukin, Daniil M.
    Dory, Constantin
    Guidry, Melissa A.
    Yang, Ki Youl
    Mishra, Sattwik Deb
    Trivedi, Rahul
    Radulaski, Marina
    Sun, Shuo
    Vercruysse, Dries
    Ahn, Geun Ho
    Vuckovic, Jelena
    [J]. NATURE PHOTONICS, 2020, 14 (05) : 330 - +
  • [29] Integrated microwave photonics
    Marpaung, David
    Yao, Jianping
    Capmany, Jose
    [J]. NATURE PHOTONICS, 2019, 13 (02) : 80 - 90
  • [30] Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception
    Muehlbrandt, S.
    Melikyan, A.
    Harter, T.
    Koehnle, K.
    Muslija, A.
    Vincze, P.
    Wolf, S.
    Jakobs, P.
    Fedoryshyn, Y.
    Freude, W.
    Leuthold, J.
    Koos, C.
    Kohl, M.
    [J]. OPTICA, 2016, 3 (07): : 741 - 747