Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation

被引:66
作者
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70550 Stuttgart, Germany
关键词
L-algebra; semi-direct product; Hilbert algebra; cycle set; brace; Yang-Baxter equation;
D O I
10.1142/S0219498808002904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semidirect product is introduced for cycloids, i. e. sets with a binary operation satisfying (x . y) . (x . z) = (y . x) . (y . z). Special classes of cycloids arise in the combinatorial theory of the quantum Yang-Baxter equation, and in algebraic logic. In the first instance, semidirect products can be used to construct new solutions of the quantum Yang - Baxter equation, while in algebraic logic, they lead to a characterization of L-algebras satisfying a general Glivenko type theorem.
引用
收藏
页码:471 / 490
页数:20
相关论文
共 26 条
[21]  
RUMP W, ALGEBRA U IN PRESS
[22]  
RUMP W, 2007, L ALGEBRAS SELF SIMI
[23]   Braces, radical rings, and the quantum Yang-Baxter equation [J].
Rump, Wolfgang .
JOURNAL OF ALGEBRA, 2007, 307 (01) :153-170
[24]   Classification of cyclic braces [J].
Rump, Wolfgang .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) :671-685
[25]  
Soloviev A, 2000, MATH RES LETT, V7, P577
[26]  
Traczyk T., 1988, MATH JPN, V33, P319