Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation

被引:66
作者
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70550 Stuttgart, Germany
关键词
L-algebra; semi-direct product; Hilbert algebra; cycle set; brace; Yang-Baxter equation;
D O I
10.1142/S0219498808002904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semidirect product is introduced for cycloids, i. e. sets with a binary operation satisfying (x . y) . (x . z) = (y . x) . (y . z). Special classes of cycloids arise in the combinatorial theory of the quantum Yang-Baxter equation, and in algebraic logic. In the first instance, semidirect products can be used to construct new solutions of the quantum Yang - Baxter equation, while in algebraic logic, they lead to a characterization of L-algebras satisfying a general Glivenko type theorem.
引用
收藏
页码:471 / 490
页数:20
相关论文
共 26 条
[1]   RIGHT-COMPLEMENTARY SEMIGROUPS - AXIOMS, POLYNOMIALS, CONGRUENCES [J].
BOSBACH, B .
MATHEMATISCHE ZEITSCHRIFT, 1972, 124 (04) :273-&
[2]   CONCERNING CONE ALGEBRAS [J].
BOSBACH, B .
ALGEBRA UNIVERSALIS, 1982, 15 (01) :58-66
[3]  
Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
[4]  
CIRULIS J, 2003, B SECT LOG LODZ, V32, P107
[5]   Hilbert algebras as implicative partial semilattices [J].
Cirulis, Janis .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (02) :264-279
[6]  
Diego A., 1966, COLLECT LOGIQUE MA A, V21
[7]  
Drinfeld V., 1992, QUANTUM GROUPS, V1510, P1
[8]  
Esteva F, 2003, J LOGIC COMPUT, V13, P531, DOI 10.1093/logcom/13.4.532
[9]   Set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P ;
Schedler, T ;
Soloviev, A .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :169-209
[10]   Semigroups of I-type [J].
Gateva-Ivanova, T ;
Van den Bergh, M .
JOURNAL OF ALGEBRA, 1998, 206 (01) :97-112