On the degrees of freedom of reduced-rank estimators in multivariate regression

被引:30
作者
Mukherjee, A. [1 ]
Chen, K. [2 ]
Wang, N. [3 ]
Zhu, J.
机构
[1] WalmartLabs, Smart Forecasting Team, San Bruno, CA 94066 USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Adaptive nuclear norm; Degrees of freedom; Model selection; Multivariate regression; Reduced-rank regression; Singular value decomposition; PRINCIPAL COMPONENTS; DIMENSION REDUCTION; SELECTION; MATRIX; MODELS;
D O I
10.1093/biomet/asu067
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.
引用
收藏
页码:457 / 477
页数:21
相关论文
共 50 条
  • [41] Degrees of freedom in low rank matrix estimation
    Ming Yuan
    Science China Mathematics, 2016, 59 : 2485 - 2502
  • [42] ADAPTIVE ESTIMATION IN TWO-WAY SPARSE REDUCED-RANK REGRESSION
    Ma, Zhuang
    Ma, Zongming
    Sun, Tingni
    STATISTICA SINICA, 2020, 30 (04) : 2179 - 2201
  • [43] Degrees of freedom in low rank matrix estimation
    YUAN Ming
    ScienceChina(Mathematics), 2016, 59 (12) : 2485 - 2502
  • [44] Degrees of freedom for piecewise Lipschitz estimators
    Mikkelsen, Frederik Riis
    Hansen, Niels Richard
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 819 - 841
  • [45] A state-space approach to time-varying reduced-rank regression
    Brune, Barbara
    Scherrer, Wolfgang
    Bura, Efstathia
    ECONOMETRIC REVIEWS, 2022, 41 (08) : 895 - 917
  • [46] Alternating DCA for reduced-rank multitask linear regression with covariance matrix estimation
    Hoai An Le Thi
    Vinh Thanh Ho
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2022, 90 (7-9) : 809 - 829
  • [47] Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach
    Vounou, Maria
    Nichols, Thomas E.
    Montana, Giovanni
    NEUROIMAGE, 2010, 53 (03) : 1147 - 1159
  • [48] Stable reduced-rank VAR identification
    Rong, Xinhui
    Solo, Victor
    AUTOMATICA, 2025, 171
  • [49] Reduced rank regression via adaptive nuclear norm penalization
    Chen, Kun
    Dong, Hongbo
    Chan, Kung-Sik
    BIOMETRIKA, 2013, 100 (04) : 901 - 920
  • [50] Reduced-rank growth curve models
    Reinsel, GC
    Velu, RP
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 114 (1-2) : 107 - 129