On the dissipative solutions for the inviscid Boussinesq equations

被引:1
作者
Cheng, Feng [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 04期
关键词
Boussinesq equations; dissipative solution; weak solution; WEAK SOLUTIONS; ENERGY-CONSERVATION; ONSAGERS CONJECTURE; EULER;
D O I
10.3934/math.2020184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dissipative solutions for the inviscid Boussinesq equations. It is shown that there is at least one dissipative solution for the inviscid incompressible Boussinesq equations. Moreover, if there is an unique strong solution then the dissipative solutions must coincide with the strong solution.
引用
收藏
页码:2869 / 2876
页数:8
相关论文
共 21 条
[1]   Dissipative Euler Flows with Onsager-Critical Spatial Regularity [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1613-1670
[2]   Anomalous dissipation for 1/5-Holder Euler flows [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Isett, Philip ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2015, 182 (01) :127-172
[3]   Onsager's Conjecture Almost Everywhere in Time [J].
Buckmaster, Tristan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (03) :1175-1198
[4]   ANALYTICAL SMOOTHING EFFECT OF SOLUTION FOR THE BOUSSINESQ EQUATIONS [J].
Cheng, Feng ;
Xu, Chaojiang .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (01) :165-179
[5]   Energy conservation and Onsager's conjecture for the Euler equations [J].
Cheskidov, A. ;
Constantin, P. ;
Friedlander, S. ;
Shvydkoy, R. .
NONLINEARITY, 2008, 21 (06) :1233-1252
[6]   ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION [J].
CONSTANTIN, P ;
TITI, ES ;
WEINAN, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :207-209
[7]   Dissipative Euler flows and Onsager's conjecture [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) :1467-1505
[8]   Dissipative continuous Euler flows [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
INVENTIONES MATHEMATICAE, 2013, 193 (02) :377-407
[9]   On Admissibility Criteria for Weak Solutions of the Euler Equations [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :225-260
[10]  
Gill Adrian E., 1982, Atmosphere -ocean dynamics, V30