Homogenization of Stationary Navier-Stokes Equations in Domains with Tiny Holes

被引:29
作者
Feireisl, Eduard [1 ,2 ]
Lu, Yong [2 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Math Inst, Prague 18675 8, Czech Republic
关键词
Weak Solution; Strong Convergence; Uniform Estimate; Homogenization Problem; Stokes System;
D O I
10.1007/s00021-015-0200-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the homogenization problem for the stationary compressible Navier-Stokes equations describing a steady flow of a compressible Newtonian fluid in a bounded three dimensional domain. We focus on the case where the domain is perforated with very tiny holes for which the diameters are much smaller than their mutual distances. We show that the homogenization process does not change the motion of the fluids: in the asymptotic limit, we obtain again the same system of equations. This coincides with similar results for the stationary Stokes and stationary incompressible Navier-Stokes system.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 15 条
  • [1] Allaire G., 1990, ARCH RATIONAL MECH A, V113, P261, DOI DOI 10.1007/BF00375066
  • [2] [Anonymous], I MATEMATYCZNY POLSK
  • [3] [Anonymous], ARCH RATION MECH AN
  • [4] Bogovskii M.E., 1980, THEORY CUBATURE FORM, V1, P5
  • [5] Brezina J, 2008, COMMENT MATH UNIV CA, V49, P611
  • [6] ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES
    DIPERNA, RJ
    LIONS, PL
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (03) : 511 - 547
  • [7] Feireisl E., 2015, MANUSC MATH UNPUB
  • [8] On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations
    Feireisl, Eduard
    Novotny, Antonin
    Petzeltova, Hana
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) : 358 - 392
  • [9] Homogenization and singular limits for the complete Navier-Stokes-Fourier system
    Feireisl, Eduard
    Novotny, Antonin
    Takahashi, Takeo
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 33 - 57
  • [10] The Dirichlet problem for steady viscous compressible flow in three dimensions
    Frehse, J.
    Steinhauer, M.
    Weigant, W.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (02): : 85 - 97