Complex structures of splitting type

被引:8
作者
Angella, Daniele [1 ]
Otal, Antonio [2 ]
Ugarte, Luis [3 ]
Villacampa, Raquel [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Acad Gen Mil, Ctr Univ Def IUMA, Ctra Huesca S-N, Zaragoza 50090, Spain
[3] Univ Zaragoza, Dept Matemat IUMA, Campus Plaza San Francisco, E-50009 Zaragoza, Spain
关键词
Complex structure; splitting type; solvmanifold; Hermitian metric; cohomology; partial derivative(partial derivative)over-bar-manifold; DOLBEAULT-COHOMOLOGY; METRICS; SOLVMANIFOLDS; DEFORMATIONS; NILMANIFOLDS; EXISTENCE; GEOMETRY; SKT;
D O I
10.4171/RMI/973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the six-dimensional solvmanifolds that admit complex structures of splitting type classifying the underlying solvable Lie algebras. In particular, many complex structures of this type exist on the Nakamura manifold X, and they allow us to construct a countable family of compact complex non-partial derivative(partial derivative) over bar manifolds X-k, k is an element of Z, that admit a small holo-morphic deformation {(X-k)(t)}(t is an element of Delta k) satisfying the partial derivative(partial derivative) over bar -lemma for any t is an element of Delta(k) except for the central fibre. Moreover, a study of the existence of special Hermitian metrics is also carried out on six-dimensional solvmanifolds with splitting-type complex structures.
引用
收藏
页码:1309 / 1350
页数:42
相关论文
共 37 条
[1]   Classification of abelian complex structures on six-dimensional Lie algebras (vol 83, pg 232, 2011) [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 :319-320
[2]   New supersymmetric vacua on solvmanifolds [J].
Andriot, David .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02)
[3]   Bott-Chern cohomology of solvmanifolds [J].
Angella, Daniele ;
Kasuya, Hisashi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 52 (04) :363-411
[4]  
[Anonymous], 2017, North-West. Eur. J. Math.
[5]  
Bock C, 2016, ASIAN J MATH, V20, P199
[6]   Invariant Complex Structures on 6-Nilmanifolds: Classification, Frolicher Spectral Sequence and Special Hermitian Metrics [J].
Ceballos, M. ;
Otal, A. ;
Ugarte, L. ;
Villacampa, R. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) :252-286
[7]   Dolbeault cohomology of compact nilmanifolds [J].
Console, S ;
Fino, A .
TRANSFORMATION GROUPS, 2001, 6 (02) :111-124
[8]  
Console S., 2016, Rend. Semin. Mat., Univ. Politec. Torino, V74, P95
[9]   Compact nilmanifolds with nilpotent complex structures:: Dolbeault cohomology [J].
Cordero, LA ;
Fernández, M ;
Gray, A ;
Ugarte, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5405-5433
[10]   ON THE EXISTENCE OF BALANCED AND SKT METRICS ON NILMANIFOLDS [J].
Fino, Anna ;
Vezzoni, Luigi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2455-2459