Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries

被引:101
作者
Xu, Guiyin [1 ,2 ,3 ]
Kushima, Akihiro [2 ,3 ,4 ]
Yuan, Jiaren [1 ]
Dou, Hui [1 ]
Xue, Weijiang [2 ,3 ]
Zhang, Xiaogang [1 ]
Yan, Xiaohong [1 ,5 ]
Li, Ju [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Mat & Technol Energy Convers, Coll Mat Sci & Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Dept Mat Sci & Engn, Orlando, FL 32816 USA
[5] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
CATHODE;
D O I
10.1039/c7ee01898c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The performance of lithium-sulfur (Li-S) batteries is greatly improved by using acidized carbon nanotube paper (ACNTP) to induce in situ polymerization of ether-based DOL/DME liquid to grow an ion-selective solid barrier, to seal in soluble polysulfides on the cathode side. The Li-S battery with the in situ barrier showed an initial specific capacity of 683 mA h g(-1) at a high current density of 1675 mA g(-1), and maintained a discharge capacity of 454 mA h g(-1) after 400 cycles. The capacity decay rate was 0.1% per cycle and a high Coulombic efficiency of 99% was achieved. Experimental characterizations and theoretical models demonstrate the in situ polymerized solid barrier stops sulfur transport while still allowing bidirectional Li+ transport, alleviating the shuttle effect and increasing the cycling performance. The soft and sticky nature of the solid electrolyte barrier makes it a good sealant, forming an enclosed catholyte chamber on the sulfur side.
引用
收藏
页码:2544 / 2551
页数:8
相关论文
共 32 条
[1]   Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
SMALL, 2016, 12 (07) :939-950
[2]   A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for High-Performance Lithium-Sulfur Battery Cells [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
CHEMSUSCHEM, 2014, 7 (06) :1655-1661
[3]  
de Grotthuss C.J. T., 1805, Memoire Sur La Decomposition de l'eau: Et Des Corps Qu' Elle Tient En Dissolution a l'aide de l'electricite Galvanique
[4]  
Dey A., 1976, US Pat., No, Patent No. 3947289
[5]   Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J].
Jayaprakash, N. ;
Shen, J. ;
Moganty, Surya S. ;
Corona, A. ;
Archer, Lynden A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5904-5908
[6]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
[7]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]
[8]   In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes [J].
Kim, Hyea ;
Lee, Jung Tae ;
Magasinski, Alexandre ;
Zhao, Kejie ;
Liu, Yang ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2015, 5 (24)
[9]   Electrochemically driven mechanical energy harvesting [J].
Kim, Sangtae ;
Choi, Soon Ju ;
Zhao, Kejie ;
Yang, Hui ;
Gobbi, Giorgia ;
Zhang, Sulin ;
Li, Ju .
NATURE COMMUNICATIONS, 2016, 7
[10]   Towards graphyne molecular electronics [J].
Li, Zhihai ;
Smeu, Manuel ;
Rives, Arnaud ;
Maraval, Valerie ;
Chauvin, Remi ;
Ratner, Mark A. ;
Borguet, Eric .
NATURE COMMUNICATIONS, 2015, 6 :6321