Global strong solutions of the 2D tropical climate system with temperature-dependent viscosity

被引:7
作者
Ye, Xia [1 ]
Zhu, Mingxuan [2 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 03期
基金
中国国家自然科学基金;
关键词
Tropical climate model; Global solution; Temperature-dependent viscosity; WELL-POSEDNESS; REGULARITY; MODEL;
D O I
10.1007/s00033-020-01321-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the tropical climate model with temperature-dependent viscosity in R-2. We obtain the global strong solution provided that the initial data parallel to v(0)parallel to(H)s(2)+parallel to theta(0)parallel to(2)(Hs)(s > 1) are small enough. It is worth to point out that there is no any smallness condition on the barotropic mode u.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]   On 2-D Boussinesq equations for MHD convection with stratification effects [J].
Bian, Dongfen ;
Gui, Guilong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1669-1711
[3]   Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation [J].
Dong, Bo-Qing ;
Wu, Jiahong ;
Ye, Zhuan .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) :511-550
[4]   Global regularity for a class of 2D generalized tropical climate models [J].
Dong, Bo-Qing ;
Wang, Wenjuan ;
Wu, Jiahong ;
Ye, Zhuan ;
Zhang, Hui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) :6346-6382
[5]   GLOBAL REGULARITY RESULTS FOR THE CLIMATE MODEL WITH FRACTIONAL DISSIPATION [J].
Dong, Boqing ;
Wang, Wenjuan ;
Wu, Jiahong ;
Zhang, Hui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01) :211-229
[6]   Global cauchy problem of 2D generalized MHD equations [J].
Fan, Jishan ;
Malaikah, Honaida ;
Monaquel, Satha ;
Nakamura, Gen ;
Zhou, Yong .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :127-131
[7]  
Frierson D. M. W., 2004, COMMUN MATH SCI, V2, P591, DOI [10.4310/CMS.2004.v2.n4.a3, DOI 10.4310/CMS.2004.V2.N4.A3]
[8]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[9]  
Kenig CE., 1991, J AM MATH SOC, V4, P323, DOI [10.1090/S0894-0347-1991-1086966-0, DOI 10.1090/S0894-0347-1991-1086966-0]
[10]   Decay rate of unique global solution for a class of 2D tropical climate model [J].
Li, Hongmin ;
Xiao, Yuelong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) :2533-2543