Global strong solutions of the 2D tropical climate system with temperature-dependent viscosity

被引:6
作者
Ye, Xia [1 ]
Zhu, Mingxuan [2 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 03期
基金
中国国家自然科学基金;
关键词
Tropical climate model; Global solution; Temperature-dependent viscosity; WELL-POSEDNESS; REGULARITY; MODEL;
D O I
10.1007/s00033-020-01321-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the tropical climate model with temperature-dependent viscosity in R-2. We obtain the global strong solution provided that the initial data parallel to v(0)parallel to(H)s(2)+parallel to theta(0)parallel to(2)(Hs)(s > 1) are small enough. It is worth to point out that there is no any smallness condition on the barotropic mode u.
引用
收藏
页数:10
相关论文
共 20 条
  • [1] [Anonymous], 1984, APPL MATH SCI
  • [2] On 2-D Boussinesq equations for MHD convection with stratification effects
    Bian, Dongfen
    Gui, Guilong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 1669 - 1711
  • [3] Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation
    Dong, Bo-Qing
    Wu, Jiahong
    Ye, Zhuan
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 511 - 550
  • [4] Global regularity for a class of 2D generalized tropical climate models
    Dong, Bo-Qing
    Wang, Wenjuan
    Wu, Jiahong
    Ye, Zhuan
    Zhang, Hui
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) : 6346 - 6382
  • [5] GLOBAL REGULARITY RESULTS FOR THE CLIMATE MODEL WITH FRACTIONAL DISSIPATION
    Dong, Boqing
    Wang, Wenjuan
    Wu, Jiahong
    Zhang, Hui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01): : 211 - 229
  • [6] Global cauchy problem of 2D generalized MHD equations
    Fan, Jishan
    Malaikah, Honaida
    Monaquel, Satha
    Nakamura, Gen
    Zhou, Yong
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01): : 127 - 131
  • [7] Frierson Dargan M.W., 2004, Communications in Mathematical Sciences, V2, P591, DOI [10.4310/CMS.2004.v2.n4.a3, DOI 10.4310/CMS.2004.V2.N4.A3]
  • [8] COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS
    KATO, T
    PONCE, G
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) : 891 - 907
  • [9] Kenig CE., 1991, J. Am. Math. Soc, V4, P323, DOI [DOI 10.1090/S0894-0347-1991-1086966-0, 10.1090/s0894-0347-1991-1086966-0, 10.2307/2939277]
  • [10] Decay rate of unique global solution for a class of 2D tropical climate model
    Li, Hongmin
    Xiao, Yuelong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) : 2533 - 2543