Direct transformation of nonlinear systems into state affine MISO form for observer design

被引:20
|
作者
Souleiman, I [1 ]
Glumineau, A [1 ]
Schreier, G [1 ]
机构
[1] Inst Rech Commun & Cybernet Nantes, CNRS, UMR 6597, F-44312 Nantes 3, France
关键词
direct transformation; observer; state affine system;
D O I
10.1109/TAC.2003.820071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives necessary and sufficient conditions to solve in a constructive way the transformation of a general multiple-input-single-output nonlinear system into a state affine system. This result is direct i.e., without solving the state elimination problem when computing the input-output differential equation. A Kalman-like observer can be designed for the obtained state affine system.
引用
收藏
页码:2191 / 2196
页数:6
相关论文
共 50 条
  • [21] AUV Control Systems of Nonlinear Extended State Observer Design
    Li Juan
    Kong Ming
    Chen Xing-hua
    Li Long-fei
    2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, : 1924 - 1928
  • [22] A state observer for nonlinear systems
    Busawon, KK
    Saif, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) : 2098 - 2103
  • [23] State observer for nonlinear systems
    Simon Fraser Univ, Vancouver, Canada
    IEEE Trans Autom Control, 11 (2098-2103):
  • [24] Direct adaptive fuzzy control with state observer for a class of nonlinear systems
    Ho, HF
    Wong, YK
    Rad, AB
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 1338 - 1343
  • [25] Observer design for nonlinear systems
    Besançon, G
    ADVANCED TOPICS IN CONTROL SYSTEMS THEORY: LECTURE NOTES FROM FAP 2005, 2006, 328 : 61 - 89
  • [26] On observer design for nonlinear systems
    Ibrir, S.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2006, 37 (15) : 1097 - 1109
  • [27] THE YOKOYAMA FORM OF AFFINE NONLINEAR-SYSTEMS
    HAN, ZZ
    ZHANG, ZJ
    CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1993, 9 (02): : 517 - 531
  • [28] Transformation the Nonlinear System into the Observer Form: Simplification and Extension
    Mullari, Tanel
    Kotta, Uelle
    EUROPEAN JOURNAL OF CONTROL, 2009, 15 (02) : 177 - 183
  • [29] TRANSFORMATION OF NONLINEAR-SYSTEMS IN OBSERVER CANONICAL FORM WITH REDUCED DEPENDENCY ON DERIVATIVES OF THE INPUT
    PROYCHEV, TP
    MISHKOV, RL
    AUTOMATICA, 1993, 29 (02) : 495 - 498
  • [30] NONLINEAR OBSERVER DESIGN VIA AN EXTENDED OBSERVER CANONICAL FORM
    DING, XC
    FRANK, PM
    GUO, LM
    SYSTEMS & CONTROL LETTERS, 1990, 15 (04) : 313 - 322