Representations of certain non-rational vertex operator algebras of affine type

被引:15
作者
Adamovic, Drazen [1 ]
Perse, Ozren [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
vertex operator algebra; generalized Verma module; singular vectors; affine Kac-Moody algebra; Zhu's algebra; category O;
D O I
10.1016/j.jalgebra.2008.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a series of vertex operator algebras of integer level associated to the affine Lie algebra A(l)((1)). These vertex operator algebras are constructed by using the explicit construction of certain singular vectors in the universal affine vertex operator algebra N-1(n - 2, 0) at the integer level. In the case n = 1 or l = 2, we explicitly determine Zhu's algebras and classify all irreducible modules in the category O. In the case l = 2, we show that the vertex operator algebra N-2(n - 2, 0) contains two linearly independent singular vectors of the same conformal weight. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2434 / 2450
页数:17
相关论文
共 23 条
[1]  
Adamovic D., 2003, INT J MATH MATH SCI, P971, DOI DOI 10.1155/S0161171203201058
[2]   A family of regular vertex operator algebras with two generators [J].
Adamovic, Drazen .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (01) :1-18
[3]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[4]  
[Anonymous], MEM AM MATH SOC
[5]  
[Anonymous], 1994, GLAS MAT
[6]   Dualities and vertex operator algebras of affine type [J].
Borcea, J .
JOURNAL OF ALGEBRA, 2002, 258 (02) :389-441
[8]   A CLASSIFICATION OF SIMPLE LIE MODULES HAVING A 1-DIMENSIONAL WEIGHT SPACE [J].
BRITTEN, DJ ;
LEMIRE, FW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) :683-697
[9]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166
[10]   CLASSICAL AFFINE ALGEBRAS [J].
FEINGOLD, AJ ;
FRENKEL, IB .
ADVANCES IN MATHEMATICS, 1985, 56 (02) :117-172