Arabidopsis Cys2/His2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate Abscisic Acid-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions

被引:180
作者
Kodaira, Ken-Suke [1 ,2 ]
Qin, Feng [2 ]
Lam-Son Phan Tran [2 ]
Maruyama, Kyonoshin [2 ]
Kidokoro, Satoshi [1 ]
Fujita, Yasunari [2 ]
Shinozaki, Kazuo [3 ]
Yamaguchi-Shinozaki, Kazuko [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Bunkyo Ku, Tokyo 1138657, Japan
[2] Japan Int Res Ctr Agr Sci, Biol Resources & Postharvest Div, Tsukuba, Ibaraki 3058686, Japan
[3] RIKEN, Plant Sci Ctr, Kanagawa 2300045, Japan
基金
日本科学技术振兴机构;
关键词
HIGH-SALINITY; EXPRESSION PROFILES; PLANT DROUGHT; EAR-MOTIF; TOLERANCE; COLD; SALT; RESPONSES; GENOME; ENCODES;
D O I
10.1104/pp.111.182683
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plants, abiotic stresses induce various physiological changes and growth inhibition that result in adaptive responses to these stresses. However, little is known about how such stresses cause plant growth inhibition. Many genes have been reported to be repressed in plants under abiotic stress conditions. ZPT2 (for petunia [Petunia hybrida] zinc-finger protein 2)-related proteins with two Cys2/His2-type zinc-finger motifs and an ethylene-responsive element binding factor-associated amphiphilic repression motif are thought to function as transcriptional repressors. To characterize the roles of this type of transcriptional repressor under abiotic stress conditions, we analyzed the functions of two Arabidopsis (Arabidopsis thaliana) ZPT2-related genes that were induced by osmotic stress and abscisic acid: AZF1 (for Arabidopsis zinc-finger protein 1) and AZF2. The nuclear localization of these two proteins was observed in the roots under control conditions, and the accumulation of AZF2 was clearly detected in the nuclei of leaf cells under stress conditions. Transgenic plants overexpressing AZF1 and AZF2 were generated using stress-responsive promoters or the GVG chemical induction system. The overexpression of these genes caused severe damage to plant growth and viability. Transcriptome analyses of the transgenic plants demonstrated that AZF1 and AZF2 repressed various genes that were down-regulated by osmotic stress and abscisic acid treatment. Moreover, many auxinresponsive genes were found to be commonly down-regulated in the transgenic plants. Gel mobility shift assays revealed that both the AZF1 and AZF2 proteins bound to the promoter regions of these down-regulated genes. These results indicate that AZF1 and AZF2 function as transcriptional repressors involved in the inhibition of plant growth under abiotic stress conditions.
引用
收藏
页码:742 / 756
页数:15
相关论文
共 51 条
[1]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[2]  
Bechtold N, 1998, METH MOL B, V82, P259
[3]   Auxin: The looping star in plant development [J].
Benjamins, Rene ;
Scheres, Ben .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :443-465
[4]   Regulation of abscisic acid-induced transcription [J].
Busk, PK ;
Pagès, M .
PLANT MOLECULAR BIOLOGY, 1998, 37 (03) :425-435
[5]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[6]   The zinc finger network of plants [J].
Ciftci-Yilmaz, S. ;
Mittler, R. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (7-8) :1150-1160
[7]   The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress [J].
Ciftci-Yilmaz, Sultan ;
Morsy, Mustafa R. ;
Song, Luhua ;
Coutu, Alicia ;
Krizek, Beth A. ;
Lewis, Michael W. ;
Warren, Daniel ;
Cushman, John ;
Connolly, Erin L. ;
Mittler, Ron .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (12) :9260-9268
[8]   A novel role for abscisic acid emerges from underground [J].
De Smet, Ive ;
Zhang, Hanma ;
Inze, Dirk ;
Beeckman, Tom .
TRENDS IN PLANT SCIENCE, 2006, 11 (09) :434-439
[9]   Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome -: art. no. 39 [J].
Englbrecht, CC ;
Schoof, H ;
Böhm, S .
BMC GENOMICS, 2004, 5 (1)
[10]   Abscisic acid signaling in seeds and seedlings [J].
Finkelstein, RR ;
Gampala, SSL ;
Rock, CD .
PLANT CELL, 2002, 14 :S15-S45