Parameter estimation of 2D polynomial phase signals using NU sampling and 2D CPF

被引:2
作者
Djurovic, Igor [1 ,2 ]
Simeunovic, Marko [2 ,3 ]
机构
[1] Univ Montenegro, Dept Elect Engn, Podgorica 81000, Montenegro
[2] Univ Donja Gorica, Fac Informat Syst & Technol, Oktoih 1, Podgorica 81000, Montenegro
[3] Inst Cutting Edge Informat & Commun Technol, Dzordza Vasingtona 66-354, Podgorica 81000, Montenegro
关键词
signal sampling; parameter estimation; filtering theory; computational complexity; interpolation; search problems; fast Fourier transforms; 2D polynomial phase signal estimator; NU sampling; 2D CPF calculation complexity reduction; two-dimensional cubic phase function; second-order partial phase derivatives; 3D search; interpolation-based approach; nonuniform signal sampling; 2D CPF evaluation; 2D fast Fourier transform; dechirping; filtering; phase unwrapping; ALGORITHM;
D O I
10.1049/iet-spr.2018.5083
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The two- dimensional ( 2D) cubic phase function ( CPF) is known as a highly accurate 2D polynomial phase signal estimator, but it has limited applicability due to the requirement for the 3D search for second- order partial phase derivatives. The authors propose an interpolation- based approach simulating non- uniform ( NU) signal sampling in order to reduce the 2D CPF calculation complexity. The NU resampling enables the 2D CPF evaluation using the 2D fast Fourier transform and searches over mixed- phase parameter. The computational complexity is reduced from O( N5) to O( N3 log2 N). The additional stage with dechirping, filtering and phase unwrapping is introduced to refine parameter estimates.
引用
收藏
页码:1140 / 1145
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 2006, Digital Image Processing
[2]  
[Anonymous], 1991, SYNTIC APERTURE R
[3]   Parameter Estimation of 2D Multi-Component Polynomial Phase Signals: An Application to SAR Imaging of Moving Targets [J].
Barbarossa, S. ;
Di Lorenzo, P. ;
Vecchiarelli, P. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (17) :4375-4389
[4]  
Boashash B, 2003, TIME FREQUENCY SIGNAL ANALYSIS AND PROCESSING: A COMPREHENSIVE REFERENCE, P627
[5]   Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms [J].
Chen, CW ;
Zebker, HA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (03) :401-414
[6]   Cubic phase function: A simple solution to polynomial phase signal analysis [J].
Djurovic, Igor ;
Simeunovic, Marko ;
Wang, Pu .
SIGNAL PROCESSING, 2017, 135 :48-66
[7]   Quasi ML algorithm for 2-D PPS estimation [J].
Djurovic, Igor .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (02) :371-387
[8]   A Hybrid CPF-HAF Estimation of Polynomial-Phase Signals: Detailed Statistical Analysis [J].
Djurovic, Igor ;
Simeunovic, Marko ;
Djukanovic, Slobodan ;
Wang, Pu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) :5010-5023
[9]   Parameter estimation of 2-D cubic phase signal using cubic phase function with genetic algorithm [J].
Djurovic, Igor ;
Wang, Pu ;
Ioana, Cornel .
SIGNAL PROCESSING, 2010, 90 (09) :2698-2707
[10]   Optimal parameter selection in the phase differencing algorithm for 2-D phase estimation [J].
Francos, JM ;
Friedlander, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) :273-279