The quantum Monte Carlo method - electron correlation from random numbers

被引:1
|
作者
Needs, Richard [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, TCM Grp, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0953-8984/20/6/064204
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The fixed-node diffusion quantum Monte Carlo (DMC) method is the most accurate method known for calculating the energies of large many-particle quantum systems. The key element of the method is the development of accurate trial many-body wavefunctions which control the statistical efficiency of the calculations and the accuracy obtained. Accurate wavefunctions can be obtained by building correlation effects on top of mean field descriptions such as density functional theory. The wavefunctions can be improved by introducing multi-determinants, pairing functions, and backflow transformations. The calculations are expensive, but the method scales well with system size and calculations on 1000 particles are possible. Some recent applications of the DMC method to atoms, molecules and solids will be presented.
引用
收藏
页数:1
相关论文
共 50 条
  • [21] MONTE CARLO METHOD IN QUANTUM STATISTICS
    FOSDICK, LD
    SIAM REVIEW, 1968, 10 (03) : 315 - &
  • [22] A MONTE CARLO METHOD FOR QUANTUM CHEMISTRY
    WHITTINGTON, SG
    BERSOHN, M
    MOLECULAR PHYSICS, 1969, 17 (06) : 627 - +
  • [23] A quantum Monte Carlo study on electron correlation effects in small aluminum hydride clusters
    Higino Damasceno, J., Jr.
    Teixeira Rabelo, J. N.
    Candido, Ladir
    NEW JOURNAL OF CHEMISTRY, 2015, 39 (03) : 2195 - 2201
  • [24] Correlation effects in positron-electron systems: A quantum Monte-Carlo study
    Harju, A
    Barbiellini, B
    Siljamaki, S
    Nieminen, RM
    Ortiz, G
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-ARTICLES, 1996, 211 (01): : 193 - 202
  • [25] MONTE-CARLO METHOD FOR RANDOM SURFACES
    BERG, B
    BILLOIRE, A
    FOERSTER, D
    NUCLEAR PHYSICS B, 1985, 251 (5-6) : 665 - 675
  • [26] Quantum Monte Carlo simulations of a particle in a random potential
    Chen, HY
    Goldschmidt, YY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : 1803 - 1816
  • [27] Random Batch Algorithms for Quantum Monte Carlo Simulations
    Jin, Shi
    Li, Xiantao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (05) : 1907 - 1936
  • [28] Monte Carlo method for a quantum measurement process by a single-electron transistor
    Goan, HS
    PHYSICAL REVIEW B, 2004, 70 (07) : 075305 - 1
  • [29] Electron emission from diamondoids: A diffusion quantum Monte Carlo study
    Drummond, ND
    Williamson, AJ
    Needs, RJ
    Galli, G
    PHYSICAL REVIEW LETTERS, 2005, 95 (09)
  • [30] Kondo effect in electron tunneling through quantum dots - Study with quantum Monte Carlo method
    Sakai, O
    Suzuki, S
    Izumida, W
    Oguri, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (05) : 1640 - 1650