The derived category of quasi-coherent sheaves and axiomatic stable homotopy

被引:16
作者
Alonso Tarrio, Leovigildo [1 ]
Jeremias Lopez, Ana [1 ]
Perez Rodriguez, Marta [2 ]
Vale Gonsalves, Maria J. [1 ]
机构
[1] Univ Santiago Compostela, Fac Matemat, Dept Alxebra, E-15782 Santiago De Compostela, Spain
[2] Univ Vigo, Dept Matemat, Esc Sup Enx Informat, E-32004 Orense, Spain
关键词
derived categories; axiomatic stable homotopy categories; schemes; formal schemes; semiseparated morphisms;
D O I
10.1016/j.aim.2008.03.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
prove in this paper that for a quasi-compact and semi-separated (nonnecessarily noetherian) scheme X, the derived category of quasi-coherent sheaves over X, D(A(qc)(X)), is a stable homotopy category in the sense of Hovey, Palmieri and Strickland, answering a question posed by Strickland. Moreover we show that it is unital and algebraic. We also prove that for a noetherian semi-separated formal scheme x, its derived category of sheaves of modules with quasi-coherent torsion homologies D-qct(x) is a stable homotopy category. It is algebraic but if the formal scheme is not a usual scheme, it is not unital, therefore its abstract nature differs essentially from that of the derived category D-qc(X) (which is equivalent to D(A(qc)(X))) in the case of a usual scheme. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1224 / 1252
页数:29
相关论文
共 33 条
[1]  
Alonso Tarrio L., 1999, Contemporary Math., V244, P3
[2]  
BOKSTEDT M, 1993, COMPOS MATH, V86, P209
[3]  
Bondal A, 2003, MOSC MATH J, V3, P1
[4]  
Conrad B., 2000, Lecture Notes in Mathematics, V1750
[5]   Complete modules and torsion modules [J].
Dwyer, WG ;
Greenlees, JPC .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (01) :199-220
[6]  
Eilenberg S., 1966, P C CAT ALG LA JOLL, P421
[7]   Relative homological algebra in the category of quasi-coherent sheaves [J].
Enochs, E ;
Estrada, S .
ADVANCES IN MATHEMATICS, 2005, 194 (02) :284-295
[8]   Kaplansky classes and derived categories [J].
Gillespie, James .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (04) :811-843
[9]  
Grothendieck A., 1971, GRUNDLEHREN MATH WIS, V166
[10]  
Grothendieck A., 1957, Tohoku Math. J., V9, P119, DOI [10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]